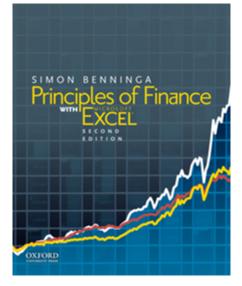
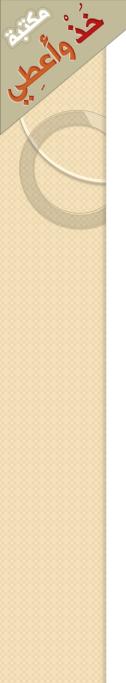


جامعة آل البيت " كلية الإقتصاد "

مجموعة طلابية تسعى لتوفير كل ما يلزم طلاب كلية إدارة المال والاعمال من مواد وشروحات واسئلة بصورة الكترونية




Instructor materials

Chapter 5 Issues in capital budgeting

www.facebook.com/groups/5th.wa36y

<u>c</u>[9]2

Chapter 5

- Problems using IRR as decision criterion
- Choosing between projects with different lifetimes
- Mid-year discounting
- Taxation and lease/purchase
- Inflation considerations

IRR as a decision criterion

- Good points
 - IRR is simple to use
 - □IRR gives information investors want
 - >What is the rate of return on an investment?

Bad points

- IRR can represent both the rate of return and the cost of an investment
 - >You can't tell without more information
- A project can have multiple IRRs

IRR's good points

See Chapter 3 for many examples

8 4	A	В	С	D	E	F	G	H		J	K	L	M
1	BASI	C IRR E	XAMPLE	(_					2	x
2				Functio	on Argument	s							
3	Year	Cash flow		IRR									
4	0	-500								i			
5	1	200				Values	B4:B9			= {-500;2	200;300;50;8	5;125}	
6	2	300	/	1		Guess			E] = numbe	er		
7	3	50								0.1045			
8	4	85		Detwo	s the internal		- f ar - carias	of each flower		= 0.1946	9627		
9	5	125		Return	is the internal	rate of return	n tor a series	or cash nows	•				
10									eference to o		ain numbers fo	or which you v	want to
11	IRR	(B4:B9)	< =IRR(B4:B9)				cald	ulate the inte	ernal rate of re	eturn.			
12	2												
13													
14				Formul	a result = 19	.4/%							
15				Help or	n this function						ОК	Car	ncel
16													
17						_							_

IRR: An investor who pays \$500 to invest in this project will earn a compound annual return of 19.47%

From Chapter 3

IRR is the rate that makes NPV = 0

	A	В		С		D	E	F	G	Н
	Discount									
14	rate	NPV								
15	0%				5,\$B\$5:\$B\$9)					
16	2%			\$4+NPV(A16,\$B\$5:\$B\$9)						
17	4%	189.52	< =\$B\$4	1+NPV(A1	7,\$B\$5:\$B\$9)					
18	6%	158.39								
19	8%	129.63			IRR is t	he rate	where	NPV = 0	0	
20	10%	102.99							-	
21	12%	78.27		300.00						
22	14%	55.28		250.00						
23	16%	33.85								
24	18%	13.86		200.00			_			
25	20%	-4.84		150.00			— Г	IRR: Slight	v below	
26	22%	-22.35	<u> </u>	100.00				20%		
27	24%	-38.78	- AN	100.00				2070	·	
28				50.00				Π		
29				0.00		<u> </u>		- U		
30					× 2% 4% 6	% 8% 10	% 12% 14%	16% 18% 20	1% 22% 24%	<u>ہ</u>
31				-50.00 0	/0 2/0 4/0 0	/0 0/0 10	/0 12/0 14/0	10/0 10/0 20		, 20/0
32				-100.00						
33							Discount rate	2		
34									1	
35		. /								

www.facebook.com/groups/5th.wa36y

5193

Froblem: IRR does not distinguish between return and cost

EXAMPLE: You're buying a car that costs \$11,000. Dealer offers you two payment options

- You can pay the dealer cash and get a \$1,000 discount, thus paying only \$10,000.
- You can pay \$5,000 now and pay \$2,000 in each of the next 3 years. The dealer calls this his "zerointerest car loan" plan.
- The bank is giving car loans at 9% interest, so the dealer claims that his "zero interest" plan is much
 wwwCheaper/groups/5th.wa36y

Your cash flows and IRR

	â		•	5	_
	Α	В	С	D	E
1		BU	YING A C	AR	
2	List price of car	11,000.00			
3	Downpayment	5,000.00			
4	Cash cost of car	10,000.00			
5	Bank rate of interest	9%			
6					
				Cash spent or	
		Payment	Payment	saved with credit	
7	Year	in cash	with credit	plan	
8	0	-10,000.00	-5,000.00	5,000.00	< =C8-B8
9	1		-2,000.00	-2,000.00	< =C9-B9
10	2		-2,000.00	-2,000.00	
11	3		-2,000.00	-2,000.00	
12					
13	Internal rate of return			9.70%	< =IRR(D8:D11)

The "zero interest loan" from dealer saves you \$5,000 today and costs you \$2,000 in years 1, 2, 3. So it's like a <u>loan</u> of \$5,000 with payments over three years. The IRR of this loan is 9.70%.

More expensive than bank loan of 9%!

www.facebook.com/groups/5th.wa36y

Better to buy car for cash and take bank loan

	A	В	С	D	E
18	Bor	rowing th	e money fr	om the bank	
		Payment	Bank loan	Total cash flow	
19	Year	in cash	cash flows	to car owner	
20	0	-10,000.00	5,000.00	-5,000.00	
21	1		-1,975.27	-1,975.27	<= = PMT(9%,3,C20)
22	2		-1,975.27	-1,975.27	
23	3		-1,975.27	-1,975.27	

If you borrowed \$5,000 from the bank at 9% over 3 years, annual repayment would be \$1,975.27.

-107

Car example: summary

Dealer's "zero interest loan" really costs 9.70%.

You should prefer the bank loan.

c10'2

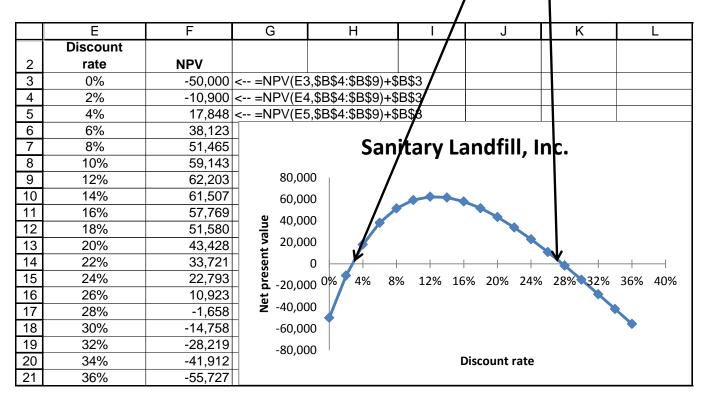
IRR problem: The dealer's cash flows also have IRR = 9.70%!

This means that for the dealer, the "zero interest loan" is a good deal!

	A	В	С	D	E
1	IRR VERS	US NPV-	-THE DE	ALER'S PROE	BLEM
2	List price of car	11,000.00			
3	Downpayment	5,000.00			
4	Cash cost of car	10,000.00			
5	Bank rate of interest	9%			
6					
		Payment	Payment	Differential dealer	
7	Year	in cash	with credit	cash flow	
8	0	10,000.00	5,000.00	-5,000.00	< =C8-B8
9	1		2,000.00	2,000.00	< =C9-B9
10	2		2,000.00	2,000.00	
11	3		2,000.00	2,000.00	
12					
13	Internal rate of return			9.70%	< =IRR(D8:D11)

The dealer's cash flows are the same as the purchaser's cash flows, with reversed sign. Dealer also has an IRR of 9.70%!

Another IRR problem: Multiple IRRs


 You're contemplating starting a garbage dump ("Sanitary Landfill")

- Cost today: \$800k
- Cash flows in years 1-5: \$450k
- Cost in year 7: \$1,500k
 - The cost of sanitizing after you fill up the garbage dump

-103

1	୍ 🔨				
	Ċ	A	В	С	D
	2	SANIT	ARY LAND	FILL, INC.	
	2	Year	Cash flow		
8	3	0	-800,000		
8	4	1	450,000		
8	5	2	450,000		
8	6	3	450,000		
8	7	4	450,000		
8	8	5	450,000		
8	9	6	-1,500,000		


The landfill has <u>two</u> IRR's! One is approximately 3% and the other is around 28%.

www.facebook.com/groups/5th.wa36y

Using Excel IRR to find both IRR's

	A	В	С	D				
1	SANITARY LANDFILL, INC.							
2	Year	Cash flow						
3	0	-800,000						
4	1	450,000						
5	2	450,000						
6	3	450,000						
7	4	450,000						
8	5	450,000						
9	6	-1,500,000						
10								
11	First IRR	2.68%	< =IRR(B3:B9	,0)				
12	Second IRR	27.74%	< =IRR(B3:B9	,25%)				

Two IRRs: conclusion

If: the correct discount rate (meaning: appropriate to project risk) is > 2.68% and < 27.74%</p>

Project is a good one

If: the correct discount rate (meaning: appropriate to project risk) is < 2.68% or > 27.74%

Project is not good
Upshot: In this case you need NPV!

When do multiple IRRs occur?

Project has "conventional cash flows" if cash flows change sign only once:
Initial cash flow is negative
All other cash flows are non-negative
OR
Initial cash flow is positive

□All other cash flows are non-positive

Multiple IRRs can occur if project has <u>non-conventional cash flows</u>.

and a	, , ,							
Vaci		A	В	C	D	E	F	G
J .'/	1	CC	ONVENTION	AL AND NO	NCONVEN	TIONAL CAS	H FLOW PAT	TERNS
			Cash flow	Cash flow	Cash flow	Cash flow	Cash flow	Cash flow
	2	Year	Project A	Project B	Project C	Project D	Project E	Project F
	3	0	-100	-100	100	25	-25	-250
	4	1	200	-50	55	35	80	35
	5	2	500	60	35	-200	-100	145
	6	3	50	80	50	33	200	330
	7	4	60	99	-100	55	55	55
	8	5	35	100	-35	155	-250	-250
			$\mathbf{\uparrow}$	\uparrow	\wedge	\uparrow	$\mathbf{\uparrow}$	\uparrow
			Conventional	Conventional	Conventional	Nonconventional	Nonconventional	Nonconventional
			cash flow	cash flow	cash flow	cash flow pattern	cash flow pattern	cash flow pattern
	9		pattern	pattern	pattern			
			Initial negative	Two initial	Initial positive	Two positive cash	Initial negative	Negative cash
			cash flow	negative cash	cash flows	flows, then	cash flow, then	flows at beginning
			followed by	flows followed	followed by	negative, then	positive, then	and end, other
			positive cash	by positive cash	negative cash	three positive	negative, positive,	cash flows
			flows	flows	flows	cash flows	negative cash	positive
	10						flows	
	10							

Cash flows that have multiple sign changes can have multiple IRRs!

Capital budgeting: Comparing projects with different life spans

- You're considering buying one of two trucks
- Truck A: Cheaper to buy, longer life, lower annual cash flows
- Truck B: More expensive, shorter life, but higher annual cash flows
- How to compare??

This is WRONG!

	A	В	С	D				
1	DIFFERENT LIFE SPANS							
2	Discount rate	12%						
3								
4	Year	Truck A	Truck B					
5	0	-100	-250					
6	1	150	300					
7	2	150	300					
8	3	150	300					
9	4	150						
10	5	150						
11	6	150						
12								
13	NPV	516.71	470.55	< =C5+NPV(\$B\$2,C6:C11)				

The NPV of A is higher than B, but they're not really comparable!

26192

8	A	В	С	D						
		DIFFERENT LIFE SPANS								
1	a	t end of yea	r 3, truck B	is replaced						
2	Discount rate	12%								
3										
4	Year	Cash flow (A)	Cash flow (B)							
5	0	-100	-250							
6	1	150	300							
7	2	150	300							
8	3	150	50	< =300-250						
9	4	150	300							
10	5	150	300							
11	6	150	300							
12										
13	NPV	516.71	805.48	< =C5+NPV(\$B\$2,C6:C11)						

Assume that after 3 years, a new truck B is purchased to replace old truck.

Now both projects are comparable.

Conclusion: B is better than A

Second solution: Equivalent Annuity Cash Flow (EAC) Compute annual CF over life of project that gives same NPV as project

Truck A NPV =
$$-100 + \sum_{t=1}^{6} \frac{150}{(1.12)^{t}} = 516.71$$

= $\sum_{t=1}^{6} \frac{125.68}{(1.12)^{t}}$
125.68 is the EAC of Truck A
Buying truck A is like getting
125.68 per year for the life of the
truck.

Truck B NPV =
$$-250 + \sum_{t=1}^{3} \frac{300}{(1.12)^{t}} = 470.55$$

= $\sum_{t=1}^{3} \frac{195.91}{(1.12)^{t}}$
195.91 is the EAC of Truck B
Buying truck B is like getting
195.91 per year for the life of the
truck.

Truck A has lower EAC than truck B Therefore B is preferred.

www.facebook.com/groups/5th.wa36y

regular light bulb and energy-saver

Standard incandescent bulbcheap to buy, expensive to operate, short life.

Energy-saving fluorescent bulbexpensive to buy, cheap to operate, long life.

Chapter 5 uses EAC to compute which light is preferable.

Regular light bulb Cheap to buy Expensive to operate □Short life Energy-saver Expensive Cheap to operate Long life

	A	В	C					
y	clo A LIG	HT BULBS						
Q .	Choosing botwoon		neap incandescents and					
	•	-						
1	expensiv	ve fluoresce	ents					
2	Annual discount rate	8%						
3	Monthly discount rate	0.643%	< =(1+B2)^(1/12)-1					
	Electric cost per kilowatt							
4	(a kilowatt = 1000 watts)	0.10						
5								
6	Incandescent bulb							
7	Watts	100						
8	Cost	\$1.00						
9	Hours per month used	250						
10	Lifetime of bulb (hours)	1,000						
11	Lifetime in months	4						
12	Monthly cost		< =B9*\$B\$4*B7/1000					
13	NPV of lifetime use	10.84	< =B8+PV(B3,B11,-B12)					
	Monthly equivalent annuity cash flow							
14	(EAC) for cheap incandescent	2.75	< =-PMT(B3,B11,B13)					
15								
16	Equivalent fluorescent bulb							
17	Watts	15						
18	Cost	\$5.00						
19	Hours per month used	250						
20	Lifetime of bulb (hours)	10,000						
21	Lifetime in months	40						
22		0.38	< =B19*\$B\$4*B17/1000					
23	NPV of lifetime use	18.19	< =B18+PV(B3,B21,-B22)					
8	Monthly equivalent annuity cash flow							
24	(EAC) for expensive fluorescent	0.52	< =-PMT(B3,B21,B23)					

Based on various costs, the conclusion of the spreadsheet:

 The monthly equivalent annuity cash flow (EAC) for the fluorescent bulb is \$0.52
 The EAC for the regular bulb is \$2.75

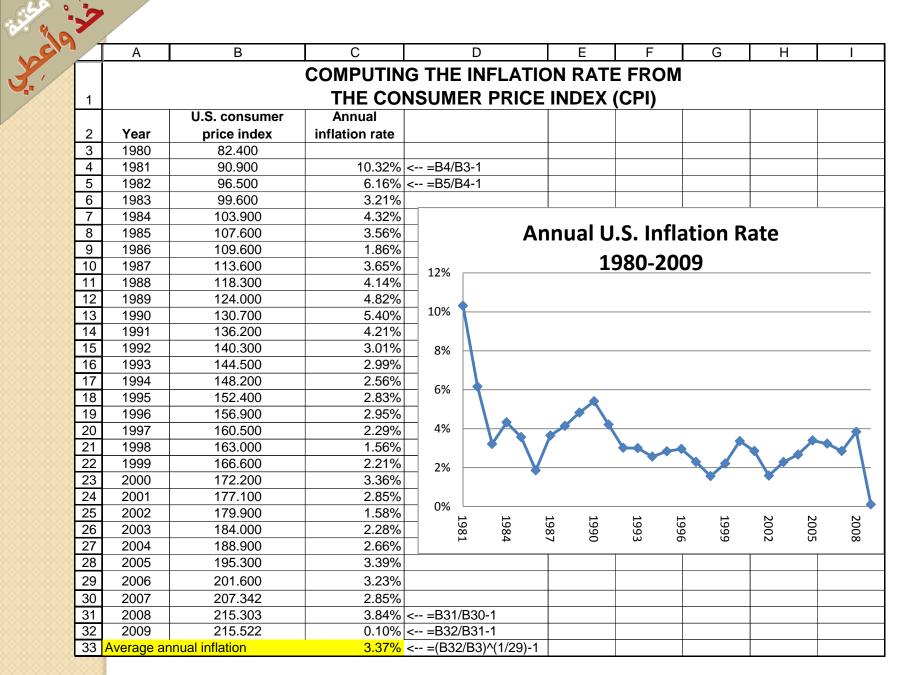
Conclusion: Cheaper to invest a lot of money in an expensive fluorescent.

Lease/Purchase with taxes

✤Tax rate = 40%

Purchase cost of computer: \$4,000 Depreciation: over 3 years □\$1,333/year—expense for taxes Lease cost: \$1,500 □ Paid in advance, years 0,1, 2, 3 Expense for taxes ◆Bank lending rate: 15%

Solution: Compare IRR of aftertax lease savings (row 16) to after-tax bank rate

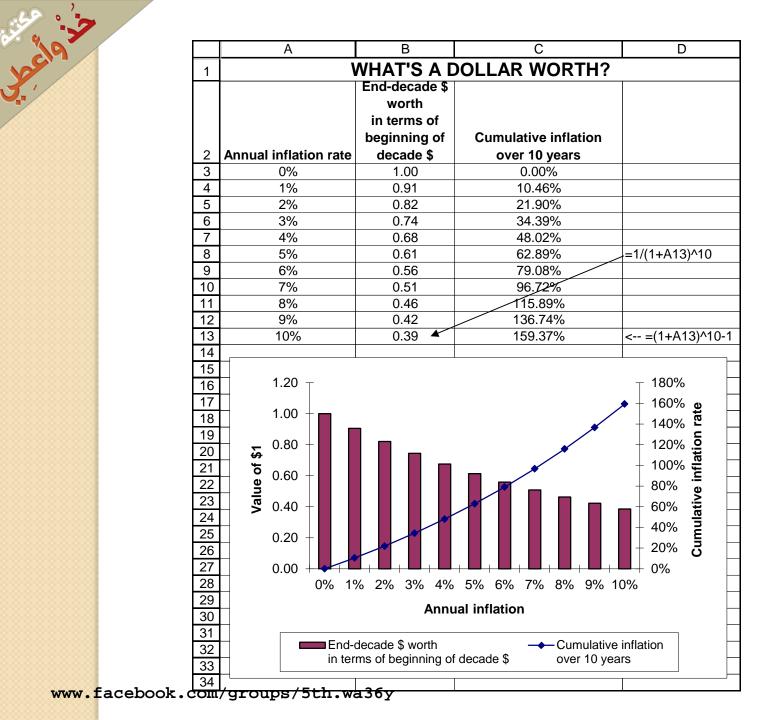

	A	В	С	D	Е	F
	L	EASE OR	PURCH	ASE?		
1	Costs are negative	e numbers	and infle	ows pos	itive nur	nbers
2	Asset cost	4,000.00				
3	Annual depreciation if asset is purchased	1,333.33	< =B2/3			
4	Annual lease payment	1,500.00				
5	Bank rate	15%				
6	Tax rate	40%				
7						
8	Year	0	1	2	3	
9	Purchase cash flows					
10	Cost of machine	-4,000				
11	Depreciation tax shield		533	533	533	< =\$B\$3*\$B\$6
12	Total	-4,000	533	533	533	< =E11+E10
13						
	After-tax lease payments	-900	-900	-900	-900	< =-\$B\$4*(1-\$B\$6)
15						
16	The lease saves	3,100	-1,433	-1,433	-1,433	< =-E12+E14
17						
	IRR of lease savings		< =IRR(B1	,		
	Alternative cost (after-tax bank interest)	9.00%	< =B5*(1-\$	\$B\$6)		
20						
21	www.efarqelochalsecom/groups/5th.wa3	6y buy	< =IF(B18	>B19,"buy","	lease")	

Inflation-adjusted discounting

◆Point 1: Inflation: money prices rise, purchasing power ↓

Point 2: Anticipated future inflation makes interest rates and discount rates 1

-10"2


www.facebook.com/groups/5th.wa36y

Inflation adds up!

103

- ♦ 3% inflation per year over 10 years
- ◆ → 34.39% cumulative inflation over 10 years
- ◆ ◆ \$1 at end of 10 years worth only
 \$0.7441 in purchasing power of \$1 at beginning of decade

		A	В	С			
		ANNUAL INFLATION RATES AND CUMULATIVE INFLATION					
	1						
	2	Annual inflation rate	3%				
		Cumulative inflation					
	3	over 10 years	34.39%	< =(1+B2)^10-1			
		End-decade \$ worth					
www.facebook.com/	rqu]	in terms of beginning of a/5th.wa ^{36y} decade\$	0.7441	< =1/(1+B2)^10			

Inflation terminology

"Nominal cash flows": Cash flows in dollars at the time received
Sometimes called "current dollars"
Example: You are promised \$100 in 3 years. No relation between the amount you will get and the inflation rate. Then \$100 is the promised nominal payment.

Inflation terminology (2)

*"Real cash flows": Cash flows adjusted for changes in purchasing power.

You are promised \$100 in 3 years. You anticipate 4% inflation per year. Then the real anticipated cash flow = \$100/(1.04)^3 = \$88.90.

□\$88.90 is the <u>purchasing-power adjusted</u> <u>cash flow</u> in year 0 (today's) dollars

Inflation terminology (3)

*"Nominal interest rates": Interest rates quoted today for future nominal payments.

This is the usual method

Example: You borrow \$1,000 today for 1 year at 7%. Your nominal repayment in 1 year is \$1000*1.07=\$1,070. This payment is unrelated to the interest rate.
 7% is the <u>nominal interest rate</u>. It applies no matter what the inflation rate is.

Inflation terminology (4)

- *"Real interest rate": Interest rate adjusted for changes in purchasing power.
 - Example: You borrow \$1,000 for 1 year at 7% (nominal interest rate). You anticipate inflation of 3%. Then the inflation-adjusted repayment in 1 year = 1070/1.03 = 1038.84.
 - □The <u>real interest rate</u> that you will pay is \$1038.84/1000 -1 = 3.884%.
 - □Note: 3.884% = 1.07/1.03 -1

Translating nominal cash flows to real using the CPI

	A	В	С	D	E	F	G	
1	HOW MUCH DID YOU REALLY EARN?							
				Cumulative			< This is the	
		Nominal		inflation		Real	cash flow in 1995	
2	Year	cash flow	CPI	rate		cash flow	dollars	
3	1995	-1,000	133			-1,000.00		
4	1996	150	138	3.76%	< =C4/\$C\$3-1	144.57	< =B4/(1+D4)	
5	1997	150	142	6.77%	< =C5/\$C\$3-1	140.49	< =B5/(1+D5)	
6	1998	150	145	9.02%	< =C6/\$C\$3-1	137.59		
7	1999	150	148	11.28%		134.80		
8	2000	150	153	15.04%		130.39		
9	2001	150	166	24.81%		120.18		
10	2002	150	172	29.32%		115.99		
11	2003	150	180	35.34%		110.83		
12	2004	150	191	43.61%		104.45		
13	2005	1,150	195	46.62%	< =C13/\$C\$3-1	784.36		
14								
15	Nominal IRR	15.00%	< =IRR(B	3:B13)	Real IRR	10.93%	< =IRR(F3:F14)	

1519²

Nominal and real discount rates

Relation between nominal and real discount rates:

 $nominal \\ 1 + interest = \begin{pmatrix} real \\ 1 + interest \\ rate \end{pmatrix} * \begin{pmatrix} anticipated \\ 1 + inflation \\ rate \end{pmatrix}$

Valuation with inflation

- When valuing a project, two methods are correct:
 - Discount anticipated nominal cash flows at nominal interest rates.
 - Discount anticipated real cash flows at real interest rates.

Illustrating: Real cash flows vs nominal cash flows

-claiz

S.		A	В	С	D	E	F	G
8	1	CA	PITAL BI	JDGETING F	OR THE W	IDGET MA	CHINE	
	2	Inflation rate	4.00%					
	3	Widget price today	15.00					
8		Nominal discount rate	12.00%					
8	5	Equivalent real discount rate	7.69%	<= =(1+B4)/(1+B2)	-1			
8	6							
8							Anticipated	
8							real cash	
8				Anticipated	Anticipated		flow in	
8			Widgets	nominal	nominal		year 0	
	7	Year	sold	widget price	cash flow		dollars	
	8	0			-9,500.00		-9,500.00	
	9	1	100	15.60	1	< =C9*B9		<= =D9/(1+\$B\$2)^A9
	0	2	125	16.22	,	< =C10*B10		<= D10/(1+\$B\$2)^A10
	1	3	150	16.87	2,530.94		2,250.00	
	2	4	160	17.55	2,807.66		2,400.00	
	3	5	170	18.25	3,102.46		2,550.00	
	4	6	200	18.98	3,795.96		3,000.00	
	5							
1	6	NPV calculations			=\$B\$3^(1·	+\$B\$2)^A9		
8		Discounting nominal cash flows at nominal discount						
	_		770.00					
8-	7	rates Discounting real cash	//8.93	< =NPV(B4,D9:D	14)+D8			
8		flows at real discount						
1	8	rates	778 03	< =NPV(B5,F9:F ²	14)+E8			
	9	Tales	110.95		14)+10			
		IRR calculations						
	21	Nominal IRR	14 47%	< =IRR(D8:D14)				
	22							
VTV	3	• facebook . com/groups/ (1+nominal IRR)/(1+initiation)-1	5 th;Wa36 10.06%	< =IRR(F8:F14) < =(1+B21)/(1+B2	2)-1			