

علوم الحاسوب ـ

المراجعة المكثفة لمادة الحل

الاستاذ : طارق حسونة --45 45 45 9 779

أنظمة العد ..

❖ تقسم أنظمة العد إلى أربعة أنواع: عشري، ثنائي، ثماني، سادس عشر.

1- سؤال: مقارنة بين أنظمة العد ...

عدد رموزه	رموز النظام	أساس النظام	بداية التعريف	
				ثنائي
				ثماني
				عشري
				سادس عشر

♦ لاحظأن:

♦ الرقم: أحد رموز النظام الأساسية / يحتل خانة واحدة / يستخدم للتعبير عن العدد العدد: المقدار الذي يتشكل من رقم أو أكثر ويتكون من خانة أو أكثر .
 (كل رقم هو عدد ، ، ولكن ليس كل عدد رقم)

❖ قيمة العدد في النظام العشري = مجموع (الرقم × وزن الخانة)

2- جد قيمة (تصور) العدد (123) في النظام العشري ؟

3- ما قيمة الرقم (4) في العدد العشري (3425) ؟

4- هام ... وزن الخانة = (أساس النظام) ترتيب الخانة والترتيب يبدأ من صفر (حفظ)

- وزن خانة المئات لأي عدد ثماني هو:
- وزن خانة العشرات لأى عدد سادس عشر هو:
 - وزن خانة الألوف لأي عدد ثنائي هو:
- وزن خانة الرقم 6 في العدد العشري (6234) هو:
- ترتيب خانة الرقم 4 في العدد السادس عشر $_{16}(14AB)$ هو:
 - اسم خانة الرقم \hat{S} في العدد الثماني $_8(1377)$ هي :

			أن تنتمي الأعداد التالية :	5- حدد إلى أي نظام عد يمكن
111		120	3F	129
		هو:) في العدد 8(431) ه	١ - ترتيب الخانة للرقم (3
	د) 3	ج) 2	ب) 1	0 (1
			من رمزين فقط هو النظام:	٢- نظام العدّ الذي يتكوّن ه
ادس عشر	د) الس	ج) الثماني	ب) العشري	أ) الثنائي
: :	السادس عشر) هو	مري، الثماني،	م أنظمة العد (الثنائي، العث	٣- العدد الذي ينتمي لجمي
6	8 (2	ح) 101	ب) 230	EA (Í
			ي النظام الثماني يساوي:	١- عد الرموز المستخدمة ف
	٤ (٤	۸ (ب) ۷	۲ (۱
نظام:	, هذا العد ينتمي لا	آخر العدد، فإن	س النظام بشكل مصغر في	٢- في حالة عدم وجود أسا.
ر عثر	د) السانس) الثماني	ب) العشري ج	أ) الثنائي
				٣- اسم أي نظام عددي يكو
د) آ+ ب	_		مة في النظام ب) أساس	P (20)(1 (45)
			ي النظام العددي نقوم بترتيب	
		ب) اليمين لليسار		
	ن وبالعكس) اليسار لليمين	ا	ج) اليمين لليمار تتازليً
		يساوي:	ة في النظام السادس عشر	١- عدد الرموز المستخدم
	د (ع	ج) ۸	ب) ۱٦	۲ (۱
ي للنظام:	فإن هذا العدد ينتم	د من اليمين، ا	بشكل مصغّر في أخر العد	٢- أن وجد الرقم (2):
سانس عشر	د) ال	ج) الثماني	ب) العشر <i>ي</i>	أ) الثنائي
		ساس:	ام العشري بوساطة قوى الأ	٣- تُمثّل الأعداد في النظ
1	7) و	ج) 8	ب) 10	2 (1
			نظام العد:	٤- العدد (F4) ينتمي ا
سادس عشر	د) ال	ج) الثماني	ب) العشري	أ) النثائي
			مداوي:	٧. اساس أي نظام عدّ يـ
د) اوزان الخانات	عدد الرموز	ج)	ب) ترتيب الخانات	أ) عدد الخانات
		ن الأساس:	لمام الثماني بوساطة قوي	٨. تمثل الأعداد في النذ
د) 16	;	8 (E	ب) 2	10 (1
				• تحويل الاعداد:

<u>:</u>	أولا: من كلهم إلى عشرى
إلى ما يكافئها في النظام العشري: (كلهم إلى عشري ـ قاعدة 1)	أ. حول الأعداد الآتية
	(1101)2
	(36) ₈
	(1AF) ₁₆
لهم	قاعدة 2: من عشرى إلى كا

عشري إلى كلهم ـ قاعدة 2	الآتية إلى ما يكافئها: (ب. حول الأعداد العشرية
-------------------------	--------------------------	------------------------

ثْنائی	(8	39) ₁₀
	()2
ثماني	(1	10)10
	()8
سادس عشر	(19	98)10
	()16

ثالثًا: من ثنائي إلى ثماني وسادس عشر وبالعكس:

حول الأعداد الآتية حسب ما يكافئها: (من ثنائي إلى ثماني وسادس عشر وبالعكس - قاعدة 3 + 4)

()8	$(110111101)_2$
()8	$(10101000)_2$
()16	$(10011101)_2$
() ₁₆	$(10110101111)_2$
()2	(705) ₈
()2	(356) ₈
()2	(E4A) ₁₆
()2	(CB0) ₁₆

			6- تدریب
()10	=	(1101010) ₂
()2	=	(44)10
()2	=	(56)8
()8	=	(11101010) ₂
()2	=	(7C) ₁₆
() ₁₆	= (1	10010110001)2
()8	=	(BE8) ₁₆

معالجة الجداول:

سادس عشر	ثماني	عشري	ثنائي
			1011001
		329	
	406		
7E			

• إيجاد ناتج العمليات الحسابية بالنظام الثنائي					
100 = 1+1+1+1 📥	1 = 1 - 10 4	10 = 1 + 1			
get was twee twee sout were were were need we twee twee twee twee twee were were w	ــا النظام الثنائي «مسسسسسسسسسسسسسسسسسسسسسسسسسسسسسسسسسسسس	7- جد ناتج العمليات الحسابية الآتية مستخده أ-			
1 1 0 0 1 0 1 1 -	1 1 0 1 1 1 0 1 0 1 1 1 1 +	1 1 0 1 1 0 1 1 1 0 1 +			
1 1 1 1 1 1×	1 0 1 1 1 1 ×	1 1 1 0 1			
and their th	कार कर				
	8- جد ناتج ما يلي مستخدما النظام الثنائي : A. 110101101+1 010111 B. 1100010-1010100 C. 110×111				
لو حكالك: اطرح العدد 1 1 1 0 1 0 1 من العدد 1 1 0 1 1 0 1 1 1 مدد 1 1 1 1 1 1 1 1 ملاحظة: في الضرب والجمع لا يهم مين فوق ومين تحت لكن في الطرح الترتيب مهم					
		9- أي العبارات الآتية صحيحة وأيها خاطئة			
$(20)_{10} > (24)_8$ -					
$(10)_{16} \le (16)_{10} - \cdots$					

البوابات المنطقية :

	NAND			NOR
التعريف				
Nاختصار لـ سیل مخرج طقیهٔ NOT	وتتشكل من NOT ORاختصار ك مع مدخل ORتوصيل مخرج وتسمى نفي أو المنطقيةNOT			
	<u>ب</u> الشكل <u>.</u>	مز لها		
اسية x —	باستخدام البوابات الأس (توضيح)		ماسية	باستخدام البوابات الأس (توضيح)
y —	X Z Y Z كبو ابة مشتقة X			
Y ————————————————————————————————————		Y — Z	X NOR Y	
	العمل	مبدأ		
عكس ناتج AND		عکس ناتج OR		
_	الحقيقة	جدول		
X Y 1 1 1 1 0 0 1 0 0	A = X NAND Y 0 1 1	1 1 0 0	Y 1 0 1 0 0	A = X NOR Y 0 0 0 1

And	OR	NOT		
		التعريف:		
بناء معظم الدوائر	قية الأساسية تدخل في	أحد البوابات المنط		
,		المنطقية		
لها مدخلان ومخرج	لها مدخلان	لها مدخل واحد		
واحد وتسمى و المنطقية	ومخرج واحد	ومخرج واحد		
	وتسمى أو	وتسمى بالعاكس		
	المنطقية	لأنها تعكس قيمة		
		المدخل		
يرمز لها بالشكل وتمثل كعبارة بـ				
x	x y	x —		
A = X AND Y	A = X OR Y	A = NOT X		
		مبدأ العمل		
اضرب	اجمع	إعكس		
		جدول الحقيقة		
X Y A=X AND Y	X Y A=X OR Y	X A = NC		
1 1 1	1 1 1 1 0 1	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 1	0		
0 0 0	0 0 0			
		التصميم الكهربائي		
توالي	توازي			

إيجاد ناتج العبارات المنطقية:

- الحل على الأولويات: (أقواس ثم Not ثم And ثم Or).. وفي حال التكافؤ يتم التنفيذ من اليسار إلى اليمين.
 - اليمين . عدد البوابات يساوي عدد الخطوات .
 - $A=1\;,B=0\;,C=1\;,D=1$ جد ناتج العبارات المنطقية الآتية علما بأن -10
- 1) A OR B AND NOT (C OR D)

2) NOT (A OR Not B AND C)

11- في السوال السابق الفرع الأول: كم عدد البوابات في العبارة ؟؟؟

	جدول الحقيقة :
عالأولويات والاشي اللي بتخلص منه حط تحته خط)	الصيغة الأولى: ** عمل جدول حقيقة كامل (نضع المتغيرات أول شيء ثم الحل
	12- اكتب جدول الحقيقة للعبارات المنطقية الآتية:
1) NOT (A AND B) OR A	2) NOT B OR A AND B

الصيغة الثانية:

هو يعطيني جدول فيه فراغات (انسخ العبارة الرئيسية عالمسودة واشتغل سطر سطر والحل عالتجربة)

13- أكمل جداول الحقيقة الآتية:

Α	В	С	B AND A OR NOT C
0	0	0	
	1	1	1
1		1	0
0	1		0

Α	В	С	Not (A and B or C)
1	1	1	
1		0	1
0	1		0
	1	0	1

تمثيل العبارات المنطقية باستخدام البوابات المنطقية:

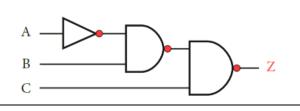
مبدأ الحل ..

ضع المتغيرات فوق ثم الحل عالأولويات .. والاشي اللي بتخلص منه حط تحته خط ..

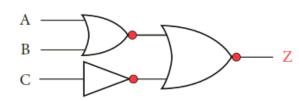
أو يمكن التخلص من أي not مع متغير ثم بالترتيب : أقواس (منفي أو غير منفي) ثم OR ثم AND

14- مثل العبارات الآتية باستخدام البوابات المنطقية ..

I) A OR B AND C OR D	2) NOTA AND B OR C AND NOT D
0	


3) (NOT A OR B) AND C OR NOT D	4) (A OR B) AND NOT (NOT C)
	تحويل البوابات المنطقية إلى عبارات منطقية:
	 ♣ يمكن الحل بأن تبدأ عكسي أو يمكن الحل من فوق لتحت ♣ آلية وضع الأقواس : أي كتلة بحطها بين أقواس . ب- أي not بعد بوابة and / or معناها () not ت- هام جدا : إذا جاءت not في نهاية المسألة معناها ه
	15- حول البوابات المنطقية الآتية إلى عبارات منطقية:
1) A B C	2) A B C
3) B C	4) A B C D A A A A B C D A A B C D A A B C D A B C D A B C D D A B C D D D D D D D D D D D D D D D D D D
	كتابة العبارات المنطقية للدارات الكهربائية
	♣ AND مفاتيح مربوطة على التوالي (التيار لا يتوزع OR ♣ OR مفاتيح مربوطة على التوازي (التيار يتوزع) (عدم نسيان الأقواس) عدم نسيان الأقواس)
1) D A B B	2) A C F F F F F F F F F F F F
9	

	إيجاد ناتج العبارات المنطقية للبوابات المشتقة
	الحل على الأولويات (بالترتيب) الحل على الأولويات (بالترتيب) NOT A NOR (B NOR C) - 1 (بالترتيب) NOT A NOR (B NOR C)
	تمثيل العبارات المنطقية باستخدام البوابات المشتقة:
حط المتغيرات فوق بعض وبعدها الحل 4 خط	مبدأ الحل نفس مبدأ البوابات الأساسية عالأولويات والاشي اللي بتخلص منه حط تحتا
	18- مثل العبارات المنطقية الآتية باستخدام البوابات المنطقية:
1) NOT (A NAND B) NAND NOT C	2) NOT A NAND (B NAND C)
3) NOT A NOR NOT B NOR NOT C	4) A NOR NOT (B NOR NOT C)
10	


تحويل البوابات المنطقية إلى عبارات منطقية: (نفس مبدأ تحويل البوابات الأساسية) ...

19- اكتب العبارات المنطقية للبوابات المنطقية الآتية:

1)

2)

الجبر المنطقى البولى:

$$\overline{A} = NOT A +$$

$$AB = A.B = A AND B$$

$$A + B = A OR B +$$

إيجاد ناتج العبارات الجبرية المنطقية: (الحل عالأولويات وهي نفس أولويات البوابات الأساسية) ...

 $:A=1\;,B=0\;,C=1\;,D=0\;$ ناتج العبارات الجبرية المنطقية الآتية علما بأن -20

1)
$$\overline{A + \overline{B \cdot C}} + D$$

2)
$$A + B \cdot C \cdot \overline{D}$$

3)
$$A.\overline{C+B}.D$$

4)
$$(\bar{A}.(B+C))+D$$

		له أقواس أصلية تنزل كما هي . المتممة الطويلة تعتبر كأنها قوس بمعني	
NOT (A		وفي الحالتين صحيح $\overline{A+B}$. \overline{C} . $\overline{A+B}$	
		لعبارات المنطقية الآتية إلى عبارات جبرية منطقية:	21- حول ا
1) (A OR B) AND (NO	ΓC AND D)		
2) NOT A OR B AND NO	OT (NOT C)		
3) A AND NOT (B OR C	AND NOT D)		
4) A OR (B AND NOT (C OR D))		
5) A NAND B			
6) A NOR NOT B			
		لعبارات الجبرية المنطقية الآتية إلى عبارات منطقية:	22- حول ا
1) $A + \underline{B.C} + \overline{\overline{D}}$			
2) $A + \overline{B \cdot C} + D$			
3) $\overline{A \cdot \overline{B}} + \overline{C}$ 4) $\overline{A + B \cdot (\overline{A} + \overline{B})}$			
4) A + D. (A + D)			
		ات الجبرية المنطقية باستخدام البوابات المنطقية:	تمثيل العبار
		مبدأ الحل ابحث عن الآتى بالترتيب (لطلابي)	
		1. الأقواس أو المتممة الطويلة ونعتبر ها وكأنها قوس	
		AND .2 OR .3	
<u></u>			
مشتقة	الجبرية يمكن تمثيلها بال	عند التحويل نستخدم البوابات الأساسية حتى لو كانت العبار	
	افئ المشتقة ₋	لأن رموز العمليات الجبرية تكافئ البوابات الأساسية ولا تك	
		بارات الجبرية المنطقية باستخدام البوابات المنطقية	23-مثل الع
$\overline{\overline{\mathbf{A}} \cdot \mathbf{B}} + \mathbf{C} \cdot \overline{\mathbf{D}}$		2) $\mathbf{A} + \mathbf{B} \cdot \overline{\mathbf{C} + \overline{\mathbf{D}}}$	
n.b C.b		2) 11 1 15 1 15	
12			
12			

تحويل العبارات المنطقية إلى عبارات جبرية منطقية وبالعكس ..

تحويل البوابات المنطقية إلى عبارات جبرية منطقية :

👃 (بنفس طريقة تحويل البوابات الأساسية لكن نستخدم رموز جبرية)

24- حول البوابات المنطقية الآتية إلى عبارات جبرية منطقية ..

2)
A
B
C

25- أعط مثال على كل مما يلي:

متغير منطقي :

بوابة منطقية أساسية:

عبارة منطقية:

رمز عملية جبرية منطقية:

رمز بوابة أساسية:

ثابت منطقي:

بوابة منطقية مشتقة:

عبارة جبرية منطقية:

رمز بوابة مشتقة :

الذكاء الاصطناعي .. شجرة البحث وخوارزمية البحث في العمق أولا ..

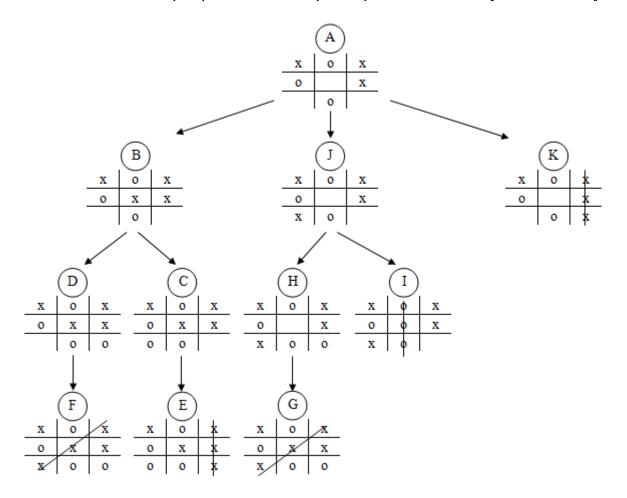
فضاء البحث : جميع الحالات الممكنة لحل المشكلة (كل نقاط الشجرة)

جذر الشجرة: الحالة الابتدائية للمشكلة.


النقطة الهدف: الحالة النهائية للمشكلة.

النقطة الميتة: النقطة التي ليس لديها أبناء.

النقطة الأب: النقطة التي لديها أبناء.


خوار زمية البحث في العمق أو لا تبحث عن أول هدف ثم تتوقف.

26-تأمل شجرة البحث الآتية ثم أجب عن الأسئلة التي تليها:

- 1) ما الحالة الابتدائية للمشكلة (جذر الشجرة) ؟
 - 2) كم عدد المستويات في الشجرة ؟
 - 3) اذكر العقد في المستوى الثالث ؟
 - 4) كم عدد حالات فضاء البحث ؟
 - 5) اذكر النقاط الميتة في الشجرة.
 - 6) أعط مثال على مسار ضمن الشجرة .
 - 7) أعط مثال على علاقة (أب ابن)؟
 - 8) أعط مثال على علاقة (ابن أب)؟
- 9) ما هي الحالة الهدف (الحالة النهائية للمشكلة) ؟
 - 10) ما مسار البحث عن الهدف ؟
- 11) ما مسار البحث عن الهدف باستخدام خوارزمية البحث في العمق أولا ؟

: x فيما يلي شجرة البحث التي تمثل اللعبة الشهيرة (x O) حيث يمثل اللاعب (x الرمز x والحاسوب الرمز -27

أجب عما يلي:

- 1) اذكر حالات فضاء البحث.
- 2) ما مسار الحل الأمثل علما بأن الهدف هو فوز الحاسوب ؟
 - 3) ما الحالة الهدف ؟

28- من خلال دراستك لشجرة البحث تأمل المعطيات الآتية ثم أجب عن الأسئلة التي تليها:

- النقطة (A) تمثل الحالة الابتدائية للمشكلة .
 - النقاط S, D أبناء للنقطة H
- P,J,F النقطة نترتبط بعلاقة أب مع النقاط K
- النقاط K, H, T تقع ضمن المستوى الثاني.
- النقطة G هدف يقع ضمن المسار الذي تقع فيه النقطة T
 - 1) ارسم شجرة البحث.
 - 2) كم عدد المستويات في الشجرة ؟
 - 3) اذكر النقاط الميتة في الشجرة ؟
- 4) ما مسار البحث عن الهدف باستخدام خوار زمية البحث في العمق أولا (البحث الرأسي) .

<u> التشفير :</u>	مات و	المعلو	أمن

التشفير:

- مفتاح التشفير نقطة أساسية في السؤال ويمثل عدد الأسطر .
 - لله الفراغات بالنص ب ◄
- 🚣 نوزع النص بشكل قطري (ابتداء من العمود الأول ثم الثالث ثم الخامس و هكذا)

 - له نكتب النص المشفر سطر سطر برمز المثلث المقلوب ثم نكتبه مرة أخرى بدون المثلثات .

29- اكتب النص المشفر للنص الأصلى علما بأن مفتاح التشفير 5 أسطر ...

Do not accept less than stars

فك التشفير ..

فك التشفير:

- 👃 نقسم النص إلى أجزاء بعدد مفتاح التشفير (عدد الأسطر)
- 👃 عدد الرموز في كل جزء = عدد الرموز الكلي ÷ عدد الأسطر
- 👃 إذا كان الناتج يحتوي كسور فإننا نجبره للأعلى وليس تقريب .
- الأجزاء فوق بعضها بعضا بحيث تكون الأحرف فوق بعضها .
- ♣ نكتب النص الأصلي بأخذ الحرف الأول من كل جزء ثم الثاني ثم الثالث و هكذا
 - نكتب النص الأصلي بالمثلثات ثم نكتبه مرة أخرى بدون مثلثات.

30- اكتب النص الأصلى للنص المشفر الآتى علما بأن مفتاح التشفير 4 أسطر:

ft Vi Vrei Vaey Vagtcvodmhoheurs

31- تأمل الشكل الآتي ثم أجب عن الأسئلة التي تليه:

i		h		∇		t		u		S				
	∇		∇		a		h		c		∇			
		w		y		1		e		c		∇		
			i		О		1		∇		e		∇	
				S		u		∇		S		S		∇

- 1- ما اسم الخوارزمية المستخدمة في عملية التشفير ؟
 - 2- ما مفتاح التشفير ؟
 - 3- اكتب النص الأصلي والنص المشفر.

تم بحمد الله .. الأستاذ : طارق حسونة