** الأسس

الصيغة العامة للأسس أن

حيث أن: أهى الأساس ون الأس

و تذكر دائماً أن الأس هو عدد ضرب الرقم بنفسه

اُن = ا × ا × ا × ن

مثلاً ٤ ٢ = ٤ × ٤ = ٢ ١

بعض قواعد التعامل مع الأسس:

۱ ـا^ن × أ = أم^{+ن}

 $\mathbf{Y}_{-\frac{1}{2}} = \mathbf{1}^{2-1}$

٣- أ^ن × ب^ن = (أ ×ب)^ن

 $\dot{\sigma}(\frac{1}{2}) = \frac{\dot{\sigma}}{\dot{\sigma}} - \epsilon$

ه۔ (أ^ن) م

٦ ـ أصفر

 $\frac{1}{\frac{1}{0}} = \frac{0}{1} - V$

٨- حتى نتمكن من جمع الأعداد التي تملك أس أو طرحها يجب أن نوحد الأس

 $\stackrel{\circ}{l} + \stackrel{\circ}{l} = 7 \stackrel{\circ}{l}$

لكتابة الأرقام بالصورة العلمية لتسهيل الحل نتبع الخطوات الآتية:

الصيغة العلمية : أ × ١٠ ن

حيث أن:

أ: رقم محصور من ١ إلى ٩

ن: الأس و هو رقم صحيح موجب أو سالب

إذا حركت الفاصلة من اليسار إلى اليمين نقلل الأس بمقدار عدد حركات الفاصلة مثل: ٢٠٤،٠٠ تصبح ١٠٤٠٠ ٢٠٠٠ الفاصلة مثل: ٢٠٤،٠٠ تصبح

و إذا حركت الفاصلة من اليمين إلى اليسار نزيد الأس بمقدار عدد حركات الفاصلة مثل:

۱۲۰۳۵ تصبح ۱۰۳۰ ۲۰۳۵

أمثلة:

جد حاصل العمليات الحسابية الآتية:

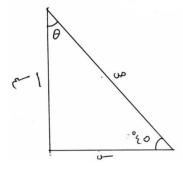
$$\frac{\sqrt{-1 \cdot \times \xi + \sqrt[3]{-1 \cdot \times \chi}}}{\sqrt[3]{-1 \cdot \times \chi}}$$

 $\frac{r-1\cdot\times r}{\cdot\cdot\cdot r} - r$

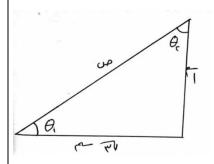
 $\frac{1 - 1 \cdot \times 7 \times 1 - 1 \cdot \times 2 \times 4 \cdot 1 \cdot \times 7}{7 \times 1 \cdot \times 7} - \frac{1}{7}$

** المثلث قائم الزاوية:

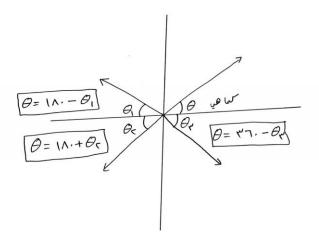
أولا لقياس أي ضلع أو الوتر مع وجود باقي المعطيات (يعني مجهول واحد) الوتر فيتاغورس:

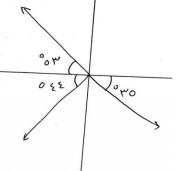

ضلع ۲

الوتر ٢ = الضلع ، ٢ + الضلع ، ٢


و نطبق العلاقات الآتية لحساب الزوايا:

جا
$$\theta = \frac{|| hali ||}{|| hali ||}$$
 , جتا $\theta = \frac{|| hali ||}{|| hali ||}$, ظا $\theta = \frac{|| hali ||}{|| hali ||}$ أمثلة:


١- جد كل من: الضلع ص و الضلع س و الزاوية


٢- جد كل من الوتر ص و الزاويتان

لإيجاد الزاوية مع محور السينات الموجب نستخدم العلاقات الآتية:

مثال : جد الزوايا الآتية بالنسبة للمحور السيني الموجب .

ملاحظات:

** بادئات النظام العالمي

أساسيات مهمة لمادة الفيزياء

البادئات هي كلمات نستخدمها للتعبير مضاعفات او أجزاء من قيمة معينه و لكن يجب وضع قيمتها قبل الحل و هذه البادئات تكون موجودة قبل الوحدة في النظام العالمي.

مثل سم أو ميكروكولوم أو ملي أمبير

و لتحويل الوحدة التي تحوي بادئة إلى نظام عالمي نضرب بقيمة البادئة

اضرب بادئة اضرب

و الجدول الآتي يوضح البادئات و قيم كل بادئة منها:

قيمة البادئة	البادئة		
91.	جيجا		
110	ميجا		
7.	كيلو		
٧- ١٠	سنتي		
۳-۱۰	ملي		
۲- ۱ ۰	م <i>ني</i> ميكرو نانو		
٩- ١ ٠	نانو		

أمثلة:

حول الوحدات الآتية الى النظام العالمي للوحدات:

۱ ـ ۱ سم

۲- ۲۲ نانوکولوم

٣-٢جيجا واط

٤-٦ ملي امبير

** المتجهات:

أولا إيجاد محصلة المتجهات

١-إذا كانت الكميات المتجهة (على نفس المحور)

بنفس الاتجاه تجمع المقادير و يكون المتجه المحصل

اكبر من كل المتجهات السابقة مقداراً و بنفس الاتجاه

|ح المحصل | = | أ | +| ب| +| جـ |

ح محصل

٢- إذا كانت الكميات المتجهة (على نفس المحور) و بعكس الاتجاه تطرح المقادير (مقدار المتجه الأكبر - مقدار المتجه الأصغر) و يكون اتجاه المحصل مع المتجه صاحب المقدار الأكبر .

|ح|=|أ|-|ب|

و يكون اتجاه المحصل ح بنفس اتجاه أكما في الشكل المجاور

نحوس + (اليمين) لأنه اكبر مقداراً من ب

٣- إذا كانت الكميات المتجهة على محورين مختلفين سينى و صادي نستعمل فيتاغورس لإيجاد مقدار المتجه المحصل

و يكون المتجه المحصل بينهما ويحدد اتجاهه باستخدام الظل

ظا $\theta = \frac{|P|}{|P|}$ و تكون الزاوية مع المتجه الموجود على محور السينات

كما في الشكل المجاور

- T

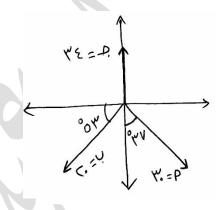
ثانياً تحليل المتجهات

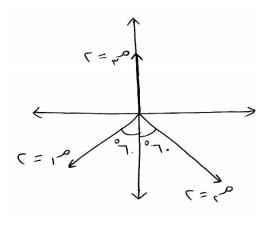
لإيجاد محصلة الكميات المتجهة يجب أن تكون المتجهات مطابقة على المحاور و لكن إذا لم تكن يجب علينا تحليلها ثم العمل على إيجاد المحصلة و لتحليلها نستعمل علاقات المثلثات القائمة

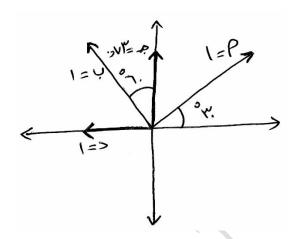
جتا $\theta = \frac{1}{100}$ حيث أن : أس المركبة السينية

 $= \frac{1}{1}$ المركبة الصادية

A


الأستاذ عبد الله الغرابات ٢٢٥٠٩٤٦٠٠٠


أساسيات مهمة لمادة الفيزياء


_ ۲

امثلة : جد محصلة المتجهات الآتية مقداراً و اتجاهاً مستعيناً بالجدول الآتي :

ظا	جتا	جا	الزاوية
٠,٥٧	٠,٨٦	٠,٥	٣.
• ,٧0	٠,٨	٠,٦	٣٧
١	٠,٧	٠,٧	٤٥
1,87	٠,٦	٠,٨	٥٣
1,77	٠,٥	٠,٨٦	٦,

معے تمنیات_ي لکم بالتغوق لا لائستا خ محبر (اللش لالغرل باس

· YYY £ 9 . 0 77