

القدس لنا

مدرسة البقعة الثانوية للبنين

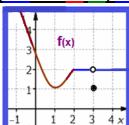
2024 - 2023

ماضيا

الصف الثاني الثانوي/العلمي

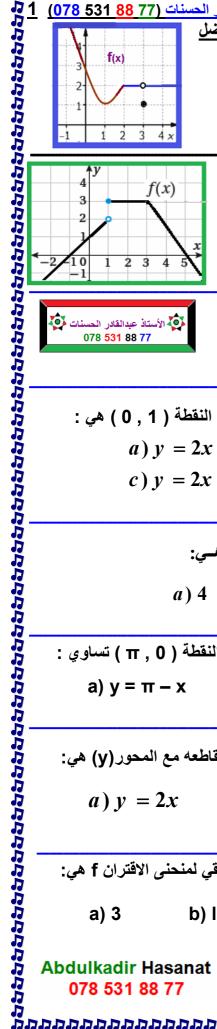
أسئلة مُتوقعة (مراجعة مُكثفة)/الفصل الأول

سؤال موضوعي / وحدة التفاضل - مع الإجابات 80


سؤال موضوعي / وحدة تطبيقات التفاضل - مع الإجابات **70**

100 سؤال موضوعي / وحدة الأعداد المركبة - مع الإجابات

بالتوفيق للجميع


الأستاذ: عبدالقادر الحسنات 77 88 531 870

(متوقعة - 2024) مدرسة البقعة الثانوية للبنين الأستاذ عبدالقادر الحسنات (77 88 531 879) متوقعة (مراجعة مكثفة) للتوجيهي العلمي 2024 / وحدة التفاضل

1) معتمداً الشكل المجاور ، فإن قيم (x) التي يكون عندها منحنى الاقتران f(x) غير قابل للاشتقاق هي:

- a) 1
 - b) 2, 3 c) 3
- d) 1, 2

2) معتمدا الشكل المجاور الذي يمثل منحنى الاقتران (f(x) ، فإن قيم (x) التي يكون عندها الاقتران f غير قابل للاشتقاق هي :

- a) 1
- b) 1, 3
- c) 3
- d) 1, 5

= f'(0) إذا كـــان $f(x) = 3e^{x+1}$ إذا كـــان (3

- a) 3
- b) 3e
- c) $3e^2$
- d) 0

: فإن معادلة المماس لمنحنى
$$f(x) = e^x + \ln(x+1)$$
 فإن معادلة المماس لمنحنى و نقطة (1 , 0) هي (4

- a) v = 2x
- b) y = 2x 1
- c) v = 2x 2
- d) y = 2x + 1

التي عندها مماس أفقي هي:
$$f(x) = \frac{2x-8}{e^x}$$
 إذا كان $\frac{2x-8}{e^x}$

- a) 4
- b)-2
- c)5
- d)5,0

: نساوي (
$$\pi$$
 , 0) عند النقطة (π , 0) عند النقطة (π) عند النقطة (π) تساوي (6

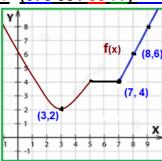
- a) $y = \pi x$
- b) $y = x \pi$
- c) $y = \pi$
- d) $y = x + \pi$

(y) هي:
$$f(x) = e^x + \cos x$$
 وذا كان $f(x) = e^x + \cos x$ وأن معادلة المماس لمنحنى والمحور (y) هي:

- a) y = 2x

- b) v = -2x c) v = x + 2 d) v = x 1

8) إذا كان
$$e^{2x-6}-2x$$
 ، فإن قيم (x) التي يكون عندها مماس أفقي لمنحنى الاقتران $f(x)=e^{2x-6}-2x$


- a) 3
- b) In2
- c) 6
- d) 3, 2

Abdulkadir Hasanat 078 531 88 77

نافعيت / على م 1 (متوقعة - 2024) مرسة البقعة الثقوية للبنين الأستذ عبدالقدر المسائت (100	ותתתתח	הההההההה		ותתתתתת		מתתתתת	111111111111111111111111111111111111111	75
$a) e^2$ $b) e^2 + 3$ $c) 3$ $d) 7$ $x = \frac{\pi}{6}$ يسبوي على المماس عند $\frac{3}{2}$ $c) \frac{1}{2}$ $b) \frac{\sqrt{3}}{2}$ $c) \frac{2}{\sqrt{3}}$ $d) - \frac{2}{\sqrt{3}}$ d	2 (078 53	حسنات (77 <u>88 81</u>	الأستاذ عبدالقادر ال	قعة الثانوية للبنين) مدرسة الب	متوقعة - 2024	اضيات / علمي ف 1 (ريا
الْذَا كَانَ $x = \frac{\pi}{6}$ يساوي: $x = \frac{\pi}{6}$ ي		: x = 2	لمنحنى f عنا	ميل المماس	فإن f ($(x) = \ln \frac{e^{2x}}{x^2}$	$\frac{x}{4}+3x$ إذا كان ((9
$a) \frac{1}{2} b) \frac{\sqrt{3}}{2} c) \frac{2}{\sqrt{3}} d) - \frac{2}{\sqrt{3}}$ $(1,1)$ مساحة المثلث المحصور بين المماس لمنحنى $f(x) = e^{1-x}$ والمحورين الإحداثيين عند النقطة (1,1) مساحي المحتود الله المحصور بين المماس لمنحنى $f(x) = e^{1-x}$ مسار مستقيم ، والمحتود الله المحتود الله مع $f(x) = e^{1-x}$ معلى $f(x) = e^{1-x}$ مسار مستقيم ، الإمارة المحتود الله موقعه الابتدائي بعد : $f(x) = e^{1-x}$ معلى مسار مستقيم ، الإمارة المحتود الله موقعه الابتدائي بعد : $f(x) = e^{1-x}$ معلى مسار مستقيم ، الإمارة المحتود الله موقعه الابتدائي بعد : $f(x) = e^{1-x}$ معلى مسار مستقيم ، الإمارة المحتود الله موقعه الابتدائي بعد : $f(x) = e^{1-x}$ معلى مسار مستقيم ، الإمارة المحتود الله موقعه الابتدائي بعد : $f(x) = e^{1-x}$ معلى مسار مستقيم ، الإمارة المحتود الله معنى المحتود المحتود الله المحتود المحتود الله المحتود الله معنى المحتود الله المحتود الله المحتود الله المحتود المحتود الله المحتود المحتود الله المحتود المحتود الله المحتود الله المحتود الله المحتود الله المحتود المحتود المحتود المحتود المحتود الله المحتود الله المحتود		$a) e^2$	$b) e^2 + 3$	c) 3	<i>d</i>)	7		
(1 , 1) المسلحة المثلث المحصور بين المماس لمنحنى $f(x) = e^{1-x}$ والمحورين الإحداثيين عند النقطة $(1, 1)$ مسلحة المثلث $(1, 1)$ المحصور بين المماس لمنحنى $(1, 1)$ به تسلوي $(1, 1)$ المحصور بين المماس لمنحنى $(1, 1)$ به تشال موقع جسم يتخْرك في مسار مستقيم $(1, 1)$ فإن الجسم يعود إلى موقعه الابتدائي بعد $(1, 1)$ به أنثل موقع جسم يتخْرك في مسار مستقيم $(1, 1)$ فإن المجسم يعود إلى موقعه الابتدائي بعد $(1, 1)$ به أنثل موقع جسم يتخُرك في مسار مستقيم $(1, 1)$ فإن المجسم يعود إلى موقعه الابتدائي بعد $(1, 1)$ به أنثل موقع جسم يتخُرك في مسار مستقيم $(1, 1)$ في تسارع الجسم عندما تكون سرعته المتجهة تساوي $(1, 1)$ به أنثل موقع جسم يتخُرك في مسار مستقيم $(1, 1)$ في المحتون عندما الجسم في حالة سكون لحظي $(1, 1)$ في مسار مستقيم $(1, 1)$ المنازع المحتون عندما الجسم في حالة سكون لحظي $(1, 1)$ في المحتون عندما الجسم في حالة سكون لحظي $(1, 1)$ المنازع المحتون عندما الجسم في الاتجاه السائب مي $(1, 1)$ في المحتون عندما الجسم في الاتجاه السائب مي $(1, 1)$ في المحتون عندما المحتون عندما الجسم في الاتجاه السائب مي $(1, 1)$ في المحتون عندما المحتون عندما الجسم في الاتجاه السائب مي $(1, 1)$ في يتحرك فيها الجسم معلق في زنبرك إلى الأعلى والأسفل ويعطى موقعه بالاقتران الذي يمثل تسارع الجسم عند أي لحظة هو $(1, 1)$ المحتون عشم عند أي لحظة هو $(1, 1)$ المحتون علي المحتون المحتون عندما عند أي لحظة هو $(1, 1)$ المحتون علي المحتون الم	ساوي:	$x = \frac{\pi}{6}$	على المماس	ميل العمودي	ر ، فإن،	$f(x) = \sin x$	x+3 إذا كان	0
a) 4 $b)$ 1 $c)$ 2 $d)$ 3 : نساوي : 10 (1) $c)$ $c)$ $c)$ $c)$ $c)$ $c)$ $c)$ $c)$		$a)^{\frac{1}{2}}$	$b)\frac{\sqrt{3}}{2}$	$c) \frac{2}{\sqrt{3}}$	<i>d</i>)	$-\frac{2}{\sqrt{3}}$		
(1) إذا كان الاقتران $t \geq 0$, s (t) = $t^2 - 8t + 7$, $t \geq 0$) $t \geq 0$, $t \geq 0$, $t \geq 0$ ($t \geq 0$) ($t \geq $	(1, 1)	داثيين عند النقطة	والمحورين الإح f	$(x) = e^{1-x}$	ماس لمنحنو	حصور بين الم	1) مساحة المثلث الم	11
a) $7 \mathrm{s}$ b) $8 \mathrm{s}$ c) $1 \mathrm{s}$ d) $4 \mathrm{s}$: بعد الم موقعه الابتداني بعد $5 \mathrm{s}$, $5 s$		<i>a</i>) 4	b) 1	c) 2	d) 3	تساوي :	
(1) إذا كان الاقتران $1 \geq 0$ () $1 \leq 1$ () $1 \leq 1$ () وقع جسم يتحَّرك في مسار مستقيم ، فإن الجسم يعود إلى موقعه الابتدائي بعد $1 \leq 1$ () وإذا كان الاقتران $1 \leq 1$ () $1 \leq 1$ () $1 \leq 1$ () إذا كان الاقتران $1 \leq 1$ () $1 \leq 1$ () $1 \leq 1$ () إذا كان الاقتران $1 \leq 1$ () $1 \leq 1$ () $1 \leq 1$ () إذا كان الاقتران $1 \leq 1$ () التي يكون عندها الجسم في حالة سكون لحظي $1 \leq 1$ () $1 \leq 1$	م ،	ي مسار مستقي	ِقع جسـم يتحّرك ف	t ≥ 0 , يُمِّثْل مو	s(t) = t	$^{2}-8t+7$	 إذا كان الاقتران 	2
a) 6 s b) 8 s c) 3 s d) 4 s : بعد يبعد إلى موقعه الابتدائي بعد : a b) a c c) a d d s الجسم يعود إلى موقعه الابتدائي بعد : a b) a c c) a إذا كان الاقتران : a d d d b) a c c) a المتجهة تساوي (a m/s) يساوي : a d d d d d d d d d d d d d d d d d d d	a) 7 s	b) 8 s	c) 1 s	d) 4 s	دائي بعد :	إلى موقعه الابت	فإن الجسم يعود	
1) إذا كان الاقتران: $0 = e^t - 6t$, $t \ge 0$, يَمْثل موقع جسـم يتحُرك في مسـار مسـتقيم ، فإن تسارع الجسم عندما تكون سرعته المتجهة تساوي (4 m/s) يساوي : a) 10	تقیم ،	، في مسار مسن	موقع جسم يتحَّرك	ع , s(t) =	$=4t^2-t$	3 , $t \geq 0$	1) إذا كان الاقتران	3
فإن تسارع الجسم عندما تكون سرعته المتجهة تساوي (4 m/s) يساوي : $a) \ 10 \qquad b) \ 6 \qquad c) \ ln 10 \qquad d) \ 4$ 10 b) 6 c) \left[ln 10 d) 4 \] 11 إذا كان الاقتران : $0 = \frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t \qquad t \ge 0$, يُمَثّل موقع جسم يتحَرك في مسار مستقيم a) $a) \ 2$, $a) \ b) \ 6$, $a) \ 2$, $a) \ b) \ 6$, $a) \ 2$, $a) \ b) \ 6$, $a) \ c) \ 2 \qquad d) \ 3$ 12 إذا كان الاقتران الاقتران $a) \ 10$, $a) \ 11$, $a) \ 2$ sint $a) \ 3$ sint $a) \ 4$ sint $a)$	a) 6 s	b) 8 s	c) 3 s	d) 4 s	دائي بعد :	إلى موقعه الابت	فإن الجسم يعود	
a) 10 b) 6 c) In10 d) 4 1) إذا كان الاقتران: $0 \leq t^2 + 6t$, $t \geq 0$, يُمَثل موقع جسـم يتحَرك في مسـار مسـتقيم 1) إذا كان الاقتران: $t^2 = t^3 - \frac{1}{2}t^2 + 6t$, $t \geq 0$, يُمَثل موقع جسـم يتحَرك في مسـار مسـتقيم 1 ما قيم (t) التي يكون عندها الجسم في حالة سكون لحظي ? 1) إذا كان الاقتران 8 $t^2 = t^3 - 6$ (t) $t^3 = t^3 -$	نقيم ،	، في مسار مست	موقع جسـم يتحَرك	يُمِّثْل , s(t) =	$=e^t-6$	$t, t \geq 0$	1) إذا كان الاقتران:	4
(1) إذا كان الاقتران: $s(t) = \frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t$, $t \ge 0$, يُمَثل موقع جسم يتحَرك في مسار مستقيم ما قيم (t) التي يكون عندها الجسم في حالة سكون لحظي ? a) 2 , 3			/ 4 m) يساوي :	جهة تساوي (S	سرعته المت	ىم عندما تكون	فإن تسارع الجس	
ما قيم (t) التي يكون عندها الجسم في حالة سكون لحظي ? $a)\ 2\ ,\ 3$ $b)\ 6\ ,\ 1$ $c)\ 2$ $d)\ 3$ (1) إذا كان الاقتران 8 $-$ 6 t^2 $-$ 6 t^3 $-$ 6 t^2 $-$ 8 أمّثل موقع جسم يتحَرك في مسار مستقيم ، فإن الفترة الزمنية التي يتحرك فيها الجسم في الاتجاه السالب هي : $a)\ (0\ ,\ 4)$ $b)\ (4\ ,\infty)$ $c)\ (0\ ,\ 9)$ $d)\ (12\ ,\infty)$ (1) يتحرك جسم معلق في زنبرك إلى الأعلى والأسفل ،ويعطى موقعه بالاقتران الذي يمثل تسارع الجسم عند أي لحظة هو : $a)\ 2 \sin t$ $b)\ 2 \cos t$ $c)\ -2 \sin t$ $d)\ -2 \cos t$	***********************	a) 10	b)	6 c) In10	d) 4		
$a)\ 2\ ,\ 3$ $b)\ 6\ ,\ 1$ $c)\ 2$ $d)\ 3$ (1) والمعتران الافتران الافتران الفترة الزمنية التي يتحرك فيها الجسم في الاتجاه السالب هي : فإن الفترة الزمنية التي يتحرك فيها الجسم في الاتجاه السالب هي : $a)\ (0\ ,\ 4)$ $b)\ (4\ ,\ \infty)$ $c)\ (0\ ,\ 9)$ $d)\ (12\ ,\infty)$ (1) يتحرك جسم معلق في زنبرك إلى الأعلى والأسفل ،ويعطى موقعه بالاقتران الذي يمثل تسارع الجسم عند أي لحظة هو : $a)\ 2$ 2 sint b) 2cost c) $a)\ 2$ $a)\ 3$ $a)\ 4$ $a)\ $	ار مستقیم	م يتحَرك في مس	, يُمِّثُل موقع جســــــــــــــــــــــــــــــــــــ	$s(t) = \frac{1}{3}t^3$	$-\frac{5}{2}t^2+6$	$t, t \geq 0$	1) إذا كان الاقتران:	5
1) إذا كان الاقتران $c = c^3 - 6$ $c = c^3 - 6$ $c = c^3 - 6$ المسلم ي الاتجاه السالب هي : a) $c = c = c$ المنتقبة التي يتحرك فيها الجسم في الاتجاه السالب هي : a) $c = c = c$ المنتقب التي يتحرك فيها الجسم في الاتجاه السالب هي : b) $c = c = c = c$ (0, 4) (12, $c = c = c$) c) $c = c = c = c = c$ function $c = c = c = c = c$ c) $c = c = c = c = c = c = c$ function $c = c = c = c = c = c = c = c$ e) $c = c = c = c = c = c = c = c = c = c $				أسكون لحظي ؟	بسم ف <i>ي</i> حالة	يكون عندها الج	ما قيم (t) التي ب	
فإن الفترة الزمنية التي يتحرك فيها الجسم في الاتجاه السالب هي : $a) (0,4) b) (4,\infty) c) (0,9) d) (12,\infty)$ $(5(t) = 2 \text{ sint})$ $(5(t) = 2 \text{ sint})$ $(5(t) = 2 \text{ sint})$ $(7(t) = 2 \text{ sint})$ $(8(t) = 2 \text{ sint})$ $(9(t) = 2 \text{ sint})$ $(10(t) = 2 \text{ sint})$ $(11(t) =$								
$a)~(0~,4)$ $b)~(4~,\infty)$ $c)~(0~,9)$ $d~)~(12~,\infty)$ $e~(1~,12~,13~,14~,15~,16~,17~,15~,15~,15~,15~,15~,15~,15~,15~,15~,15$	قيم ،	في مسار مست	موقع جسم يتحّرك	، يُمِّثل، t≥0، يُمِّثل،) , s(t) = 1	$t^3 - 6t^2 - 8$	1) إذا كان الاقتران 3	6
1) يتحرك جسم معلق في زنبرك إلى الأعلى والأسفل ،ويعطى موقعه بالاقتران S(t) = 2 sint ، ويعطى موقعه بالاقتران الذي يمثل تسارع الجسم عند أي لحظة هو : a) 2sint b) 2cost c) - 2sint d) - 2cost 9 10 11 12 13 14 15 16 17			هي :	الاتجاه السالب ه	ها الجسم في	التي يتحرك في	فإن الفترة الزمنية	
فإن الاقتران الذي يمثّل تسارع الّجسم عند أي لحظة هو : a) 2sint b) 2cost c) - 2sint d) - 2cost 9 10 11 12 13 14 15 16 17		a) (0, 4)	b) (4, o	c) $c)$ (0	, 9)	d) (12,	∞)	
9 10 11 12 13 14 15 16 17		S(t) = 2 s	قعه بالاقتران int	_				7
		a) 2sint	b) 2cost	c) – 2sint	d) – 2	2cost		_

الأستاذ عبدالقادر ات / علمي ف 1 (متوقعة - 2024) مدرسة البقعة الثانوية للبنين

تمدا لشكل المجاور والذي يمثل منحنى الاقتران (r (x) ، أجب عن الأسئلة (18 ، 19 ، 20 ،21 ، 22) الآتية :

18)
$$f'(6) = a) 1 b) 4$$

$$(1)$$
 (1) (2) (1)

$$d$$
) فير موجودة

19)
$$f'(5) = a) 4 b) 0$$

$$d$$
) غير موجودة

20)
$$f'(3) = a) 0$$
 $b) 2$ $c) 3$

$$c)$$
 3

$$d$$
) غير موجودة

21)
$$f'(8) = a) 8 b) 2$$

$$d$$
) غير موجودة

22)
$$g(x) = f^{2}(x) \Rightarrow g'(9) = a) 8$$

$$c)$$
 32 d

23)
$$f(x) = x^2 + \cos x \Rightarrow f'(x) = a$$
) $2x + \sin x$

b)
$$2x - \sin x$$

c)
$$2x \sin x$$

$$d$$
) $-2x\sin x$

24)
$$f(x) = x^2 \cos x \Rightarrow f'(x) = a$$
) $2x \sin x$

$$b)-2x\sin x$$

c)
$$2x \cos x - x^2 \sin x$$
 d) $2x \cos x + x^2 \sin x$

d)
$$2x\cos x + x^2\sin x$$

25)
$$f(x) = x^2 + \sin x^2 \Rightarrow f'(x) =$$

a)
$$2x + \cos x^2$$

b)
$$2x + 2x \cos x^2$$

c)
$$2x + 2\sin x \cos x$$

$$d)2x\sin^2 x + 2x^3\cos x$$

$$f(2) = 1, f'(2) = -4, g(2) = -1, g'(1) = 5 \Rightarrow$$

دا هذه المعلومات ، أجب عن الأسئلة (26 - 30)

26)
$$(f g)'(2) =$$

$$b) - 9$$

$$d)-1$$

27)
$$(\frac{f}{g})'(2) =$$

$$b)-1$$

$$c)-9$$

$$d)$$
 1

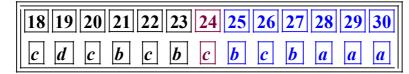
$$(3f - g)'(2) = a) 7$$

$$b) - 7$$

$$c)-17$$

29)
$$(\frac{g}{f})'(2) =$$

$$c)-9$$



30)
$$(\frac{3}{f})'(2) =$$

$$b)-12$$

$$c)-3$$

$$d$$
) 0

ت / علمي ف 1 (متوقعة - 2024) مدرسة البقعة الثانوية للبنين الأستاذ عبدالقادر

31)
$$f(x) = \ln x^3 \Rightarrow f''(x) = a 3 \ln x$$

b)
$$\frac{-3}{x^2}$$
 c) $\frac{3}{x}$

c)
$$\frac{3}{x}$$

$$d)\frac{3}{x^2}$$

(32)
$$f(x) = (x^3 - 2)(x^3 + 2) \Rightarrow f'(-1) = a) 6$$
 $b) - 6$ $c) 5$

$$b)-6$$

(33)
$$f(x) = \ln x \Rightarrow x^2 f'(x) + x^3 f''(x) + x^4 f^{(3)}(x) =$$

a)
$$-x$$
 b) $2x$ c) $4x$ d) $-4x$

34)
$$f(x) = 4 \sin^2 x \cos^2 x \Rightarrow f'(\frac{\pi}{6}) = a) \sqrt{3}$$
 $b) 4\sqrt{3}$ $c) 2$ $d) - 2$

$$b) 4\sqrt{3}$$

$$c)$$
 2

$$d)-2$$

35)
$$f(x) = 4 \sin^2 2x \cos^2 2x \Rightarrow f'(\frac{\pi}{6}) = a - 2\sqrt{3}$$
 b) $4\sqrt{3}$ c) $2\sqrt{3}$

$$b) 4\sqrt{3}$$

c)
$$2\sqrt{3}$$

$$d)-2$$

36)
$$f(x) = 2 \sin^2 x \cos^2 x \Rightarrow f'(x) =$$

a)
$$2\sin 4x$$
 b) $4\sin 4x$ c) $\sin 4x$ d) $8\cos 2x$

$$c) \sin 4x$$

$$d$$
) $8\cos 2x$

37)
$$f(x) = \sin(\pi e^x) \Rightarrow f'(0) =$$

$$a) \pi b) e$$

$$(c)-1$$
 $(d)-\pi$

38)
$$f(x) = x^2 + \sin^2 x \Rightarrow f'(x) =$$

a)
$$2x + \cos x^2$$

$$b) 2x + \sin 2x$$

c)
$$2x + 2\cos x$$

$$d$$
) $2x - 2\sin x \cos x$

38)
$$f(x) = x^{2} + \sin^{2} x \Rightarrow f'(x) =$$

a) $2x + \cos x^{2}$
b) $2x + \sin 2x$
c) $2x + 2\cos x$
d) $2x - 2\sin x$

39) $g'(3) = -1$, $g(3) = 2$, $f(x) = g^{3}(x) \Rightarrow f'(3) =$
a) -12
b) -10
c) 6

40) $f(x) = 4\sin^{2} x \Rightarrow f'(x) =$
a) $4\sin x \cos x$
b) $4\sin 2x$
c) $8\cos x$

31] 32 33 34 35 36 37 38 39 40
b) b a a c d b a b

$$a) - 12$$

$$b)-10$$

c) 6
$$d$$
)-3

40)
$$f(x) = 4\sin^2 x \Rightarrow f'(x) =$$

- a) $4\sin x \cos x$ b) $4\sin 2x$ c) $8\cos x$

- d) $4\cos^2 x$

ات / علمى ف 1 (متوقعة - 2024) مدرسة البقعة الثانوية للبنين الأستاذ عبدالقادر الحسنات (77 88 531 870) 41) إذا كان f(x) = ln(tanx) فإن f(x) عساوي: $a) \sec^2 x$ b) cotx $c) - \cot x$ d) secx cscx 42) إذا كان f(x) =sin(lnx) فإن f(x) فان (42) b) cos(lnx) a) x cosx : إذا كان $f(x) = \sin^3 x$ أنا إذا كان (43 a) $\frac{-9}{8}$ b) $\frac{9}{8}$ c) $\frac{3\sqrt{3}}{8}$ d) $\frac{3}{2}$ ونا قان g'(3) = -1, g(3) = 2, $f(x) = g^3(x)$ تساوي (44) إذا كان g'(3) = -1a) - 12b) - 10c) 6 d)-3: تساوي f'(x) فان $f(x) = \cos x^2$ نان (45 c) $2x \cos x^2$ d) $-2x \sin x^2$ $a) 2 \sin x \cos x$ b) $2x \sin x$: تساوي $f'(x) = \ln(\tan x)$ نان (46) $a) \sec^2 x$ b) cotx $c) - \cot x$ d) secx cscx 47) $f(x) = x^2 + 1$, $g(x) = 3x^2 \Rightarrow (f \circ g)'(-1) =$ a) 12 b) -6 c) 36 d) -3648) $f(x) = \sin x$, $g(x) = 4 - x^2 \Rightarrow (f \circ g)'(2) =$ b) –4 c) 0 d) -249) f'(6) = 3, g(4) = 6, $g'(4) = -2 \Rightarrow (f \circ g)'(4) =$ (b)-6 (c) 24 (d)-36a) 12 50) F(x) = g(h(x)), h(5) = -3, h'(5) = -1, g'(-3) = 4 $\Rightarrow F'(5) = a - 12$ b - 4 c) 12 d) 441 42 43 44 45 46 47 48 49 50

اضيات / علمى ف 1 (متوقعة - 2024) مدرسة البقعة الثانوية للبنين الأستاذ عبدالقادر الحسنات (77 88 531 88)

: مان $f(x) = 6^{4x}$ تساوي $f(x) = 6^{4x}$ نان (51)

 $a) 6^{4x} (4)$

b) $6^{4x} (\ln 4x)$

c) 6^{4x} (4 ln6)

d) 6^{4x} (ln6)

: فإن f'(x) فيان $f(x) = \log_3 x$ إذا كان

a) $\frac{1}{x \ln 3}$

 $b) \frac{\ln 3}{x} \qquad c) \frac{3}{x} \qquad d) 3^x$

: نان $f'(-\frac{1}{2})$ فان $f(x) = \ln(xe^{2x})$ تساوي $f'(-\frac{1}{2})$

a)-1

b) 0

c) 2

d)-4

a) 0

b) 1

c) ln2

 $d) - \ln 2$

 $= \frac{\mathrm{d}y}{\mathrm{d}x} \quad \text{i.i.} \quad y = x^{x} \quad \text{i.i.} \quad (55)$

a) $x^{x} \operatorname{Ln} x + 1$ b) $x^{x} \operatorname{Ln} x + x^{x}$ c) x^{x-1} d) x^{2}

: مان f'(x) فان $f(x) = \pi^{x}$ نساوي (56)

b) $\pi^{x} - 1$ c) $\pi^{x} (\ln \pi)$

d) π^x

: يذا كان $f(x) = 6^{4x}$ تساوي (57) إذا كان

a) $6^{4x}(4)$

b) 6^{4x} (ln4x)

c) 6^{4x} (4 ln6)

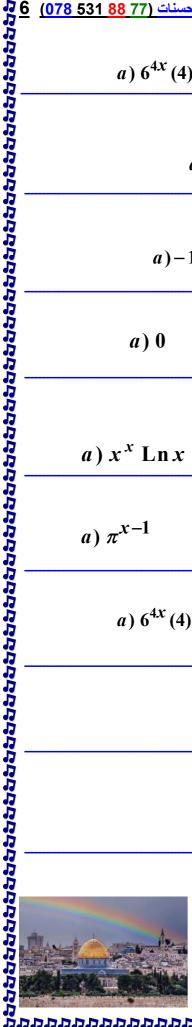
d) 6^{4x} (ln6)

: مان $f(x) = 2^{4-x^2}$ تساوي (58) اذا كان $f(x) = 2^{4-x^2}$

a) ln4

b) 2ln4

c) ln2


d) ln16

: مساوي f'(x) فان $f(x) = \log_3 x$ إذا كان

a) $\frac{1}{x \ln 3}$

 $b) \frac{\ln 3}{r} \qquad c) \frac{3}{r} \qquad d) 3^{r}$

: فإن (1) أن $f(x) = \log(x^2+1)$ نساوي $f(x) = \log(x^2+1)$

c) $\frac{2}{\ln 10}$ d) $\frac{1}{\ln 100}$

ات / علمي ف 1 (متوقعة - 2024) مدرسة البقعة الثانوية للبنين الأستاذ عبدالقادر الحسنات : النا كان $f(x) = 2^x \sin x$ أيان $f(x) = 2^x \sin x$ b)1 $c) \ln 2$ a) 0= (4,2) اِذَا كَانَــت $\frac{dy}{dx}$ عنــد النقطــة (62) b) $\ln \frac{1}{4} - \frac{1}{4}$ c) $4 - \ln 4$ d) $4 + \ln 4$ a) $\ln \frac{1}{4} + \frac{1}{4}$:و) إذا كان $f(x) = e^{\sin x} + 1$ فإن ميل المماس لمنحنى $f(x) = e^{\sin x} + 1$ وأذا كان b) In2 a) 2 c) 1 $=\frac{dy}{dx}$ إذا كان منحنى العلاقة الوسيطية يعطى: y=6t, $x=t^2$ فإن بالعلاقة الوسيطية يعطى: $b)12 t c) \frac{3}{t} d) \frac{2}{t}$ y = t + 2 , $x = t^2$ ميــل الممــاس لمنحـنى العلاقــة الوسـيطية (65) a) 6 b) 3 $c) \frac{1}{3}$ $d) \frac{1}{6} : a = 3$ $0 \le t \le 2\pi$, $y=1-\cos t$, $x=t-\sin t$ إذا كان منحنى العلاقة الوسيطية يعُطى: a) $\sqrt{2}$ b) $\sqrt{2}+1$ c) $2\sqrt{2}+1$ d) $2\sqrt{2} = x = \frac{\pi}{4}$ y=tant, $x=sec^2t-1$ ميل المماس لمنحنى العلاقة الوسيطية (67 (b)-2 (c) (a) 2 68) إذا كانت : y = 2cost ، x = sint ، فإن المشتقة الثانية لهذه المعادلة الوسيطية تساوي: $a)-2sec^3t$ b) 2sec³t c) 2sec²t d)-2t = 1 عند $y = 3t^2 - 3$, x = 3t + 2 عند $y = 3t^2 - 3$ عند $y = 3t^2 - 3$ a) y = 2x - 10 b) y = 2x - 8 c) y = 2x - 5 d) y = 2x: هي $t = \frac{\pi}{4}$ عند $y = \cos t$, $x = \sin t$ عند $t = \frac{\pi}{4}$ ع a) $y = \sqrt{2} + x$ b) $y = \sqrt{2} - x$ c) $y = \sqrt{2}x$ d) y = -x61 62 63 64 65 66 67 68 69 70

ریاضیات / علمی ف 1 (متوقعة - 2024) مدرسة البقعة الثانویة للبنین $= \frac{dy}{dx}$, $\sin x + \cos y = 1$ (71) إذا كانت $\cos y = 1$ b) $\frac{\sin y}{\cos x}$ c) $\frac{-\cos x}{\sin y}$ d) $\frac{\cos x}{\sin y}$ a) cot xy $=\frac{dy}{dx}$ إذا كانت $x-x^2=y+y^2=12$ فيان (72) a) $\frac{-x}{y}$ b) $\frac{1+2x}{1-2y}$ c) $\frac{1-2y}{1+2x}$ d) $\frac{1-2x}{1+2y}$ $= \frac{dy}{dx} i \dot{y} , x^2 = Lny$ (73) a) - 2xy b) 2xy c) 2xd) 2y ر y - 4 واحدة من النقط الآتية والواقعة على منحنى العلاقة x + 2 = x + 4) يكون عندها المماس موازياً للمستقيم 0 = 2 + 4 x + 6 x : a) (1,7) d) (2, 2) c) (-1, 3) b) (-1, 5) 75) واحدة من النقط الآتية والواقعة على منحنى العلاقة $x+4=(y-3)^2$ يكون عندها المماس v = 2x + 1 عمودياً على للمستقيم b) (-3, 2) c) (-4,3) d) (5,0) a) (-3,4) $=\frac{d^2y}{dx^2}$ فإن $x = \sin y$ إذا كانت $x = \sin y$ c) $\sec y + \tan y = d$) $\sec^2 y + \tan y$ a) $\cot y \csc y$ b) $\sec^2 y$ بناوي: $y = t^3 - 4t^2$ ، $x = 3t^2 + 4$) بناتية لهذه المعادلة الوسيطية تساوي: $b)\frac{1}{6t}$ c) $\frac{1}{12t}$ a) 6 t d) 12 t $a) \frac{5}{y^3} \qquad b) \frac{-5}{y^3} \qquad c) \frac{-x}{y} \qquad d) \frac{1-x^2}{y^3} = \frac{d^2y}{dx^2} \text{ if } x^2 - y^2 = 5$ [78] :ناد کانت $\frac{d}{dx}(y\ y')$ فإن $y = \sin 2x$ تساوي (79 b) $4\sin 2x$ a) 4 $c)-4\cos 2x$ d) $4\cos 2x$ (a)-2 (a) (a) (a) (a) (a) (a) (a) (b) (b) (b) (b) (b) (b) (b) (c) (

<u> </u>	404 0
ميات / علمى ف 1 (متوقعة - 2024) مدرسة البقعة الثانوية للبنين الأستاذ عبدالقادر الحسنات (77 <mark>88 531 89) 1 أ</mark> أسئلة متوقعة للتوجيهي العلمي 2024 / وحدة تطبيقات التفاضل	رياض
078 531 88 77	
الون على شكل كرة ، يِزداد حجمه بمُعدَّل cm³/s 80 . جد معدل تغير مساحة سطحه	1) ڊ
عندما یکون نصف قطره 4 cm . ما در این در ما در این ما در در این ما در	
a) 20 b) 40 c) 160 d) 10	
بزداد طول ضلع مكعب بمعدل 1 cm/s ، جد معدل زيادة الحجم عندما يصبح طول ضلعه 4 cm	2) ي
(a) 16 b) 12 c) 48 d) 64	
تحرَّكت السيّارة A والسيّارة B في الوقت نفسه، ومن النقطة نفسها، بحيث اتَّجَهت السيّارة A نحو الشمال	_ : /3
سرك المديارة A والمديارة B في الوقت السيّارة B نحو المشرق بسرعة M / 30 km / h.	. (3
جد مُعدَّل تغيُّر البُعْد بين السيَّارتين بعد ساعتين من انطلاقهما.	
(a) 100 b) 200 c) 10 d) 400	
بدأت سفينتان الحركة من نفس الميناء بشكل مستقيم في اتجاهين مختلفين قياس الزاوية بينهما (° 120) ،	(4
إذا كانت سرعة السفينة الأولى (km/h) وسرعة الثانية (4 km/h) ،	
فجد معدل التغير في المسافة بينهما بعد ساعتين من الانطلاق	
a) 5 $b)-0.5$ $c) 9.8$ $d)-9.8$	
	<i>,</i> –
سلم طوله (m 5) أمتار يرتكز بطرفه العلوي على حائط عمودي وبطرفه السفلي على أرض أفقية ، بدأ الطرف السفلي بالانزلاق مبتعداً عن الحائط بمعدل (m/s) . جد معدل تغير الزاوية بين السلم والأرض	(5
ب اسرت المستقى بالمرد في المستقد على المستقد المستقدم المستقد المستقدم الم	
5 (1 m) 1.8 y 3 83 x	
a) $\frac{1}{3}$ b) $\frac{1}{4}$ c) $-\frac{1}{2}$ d) $-\frac{1}{3}$	
$a) \frac{\pi}{3} b) \frac{\pi}{4} c) - \frac{\pi}{2} a) - \frac{\pi}{3}$	
X	
عن أقرب نقطة على ساحل مستقيم. إذا كان مصباح المنارة يُكمِل 4 دورات في الدقيقة،	, (0
فجد سرُّعة تحرُّك بقعة الضوء على خط الساحل عندما تبعد مسافة Km عن أقرَّب نقطة إلى المنارة.	
a) $\frac{80}{3}$ b) $-\frac{80}{3\pi}$ c) $-\frac{80\pi}{3}$ d) $-\frac{80}{3}$	
مصعدان كهربائيان المسافة بينهما (8) أمتار ، بدأ الأول الارتفاع بسرعة (s/ 2 m)	. /7
	. (1
جد معدل التغير في المسافة بينهما بعد (تانيتين) من بدء الحركة	
v / 8	
a) 0.39 b) -3.9 c) 3.9 d) 39.1	
الأستاذ عبدالقادر الحسنات (10)	-
	44.4

8) رُسم مربع داخل دائرة ، بحيث تقع رؤوسه على محيطها ،وأخذ كل منهما يتمدد ، فإذا كان معدل تزايد نصف قطر الدائرة 3 cm/s ، جد معدل تغير مساحة المنطقة المحصورة بينهما

عندما يُصبح طول نصف قطر الدائرة 5 cm/s

- a) $30\pi 60$
- $b) 30\pi$
- $c)15-30\pi$ d) 60π

9) ضلعان متطابقان في مثلث طول كل منهما (a cm) والزاوية بينهما θ ، $heta=rac{\pi}{3}$ إذا كانت الزاوية تتناقص بمعدل (0.5 rad / min) فجد معدل التغير في مساحة المثلث عندما

- $(a) \frac{1}{4}a^2$ $(b) \frac{1}{2}a^2$ $(c) \frac{1}{8}a^2$ $(d) \frac{\sqrt{3}}{8}a^2$

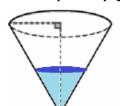
(0.6/s) يزداد بمعدل (x) يزداد كان الإحداثي ($f(x) = \sqrt{x^2 + 3}$ بإذا كان الإحداثي (x) يزداد بمعدل (10

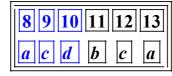
x = 3 جد معدل تغير المسافة بين هذه النقطة والنقطة (1, 0) عندما

- $f(x)=\sqrt{x^2+3}$
- a) 0.4
- b) 7.5 c) 0.075 d) 0.75

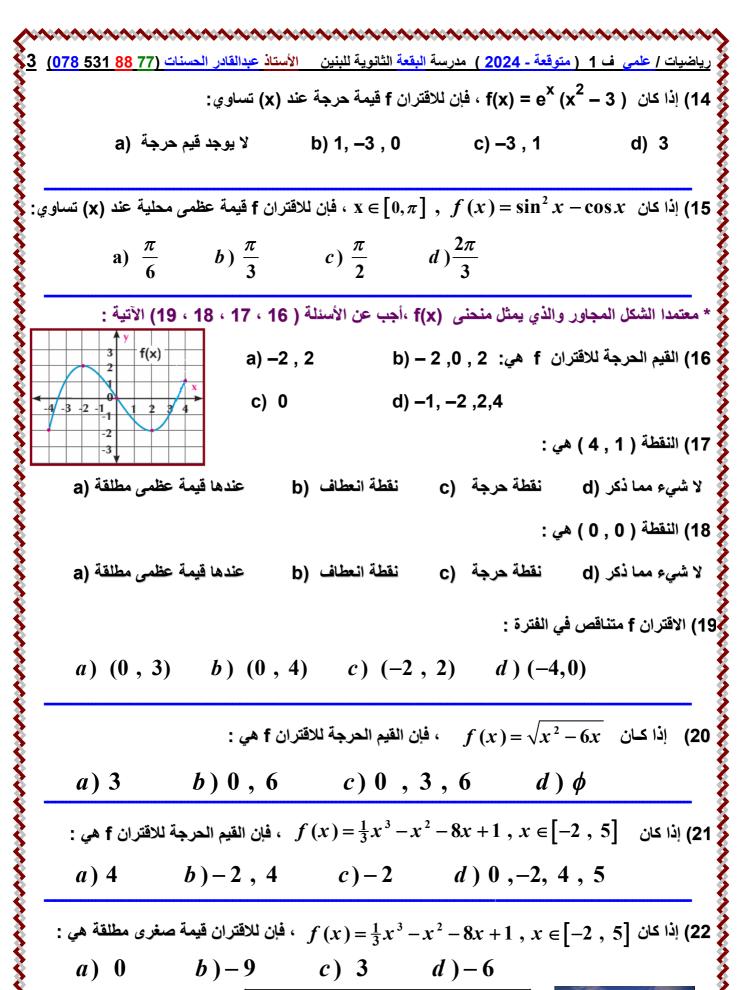
11) أسطوانة معدنية قطر قاعدتها يساوي ارتفاعها ، بدأت بالتمدد محافظة على شكلها ، $96\pi \text{ cm}^2/\text{s}$ فإذا كان معدل الزيادة في مساحة سطحها الكلي فجد معدل التغير في نصف قطرها عندما يكون محيط قاعدتها (8π)

- a) 8 (b) 2 (c) 4 d) 6 الاحظ هنا أن نصف القطر كمية متغيرة

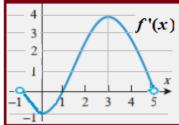

(0.5 π m³ / h) يتسرب منه الماء بمعدل (a) وارتفاعه (b) ، يتسرب منه الماء بمعدل (12 جد معدل انخفاض الماء في الخزان


- $(a)-\frac{a^2}{4}$ $(b)-\frac{1}{2}a^2$ $(c)-\frac{1}{2a^2}$ $(d)-\frac{2}{a^2}$

هنا نصف القطر ثابت


13) خزان ماء على شكل مخروط قائم قاعدته إلى الأعلى ، نصف قطر قاعدته (4 cm) وارتفاعه (12 cm) ، صُب فيه الماء بمعدل (s π cm³ / s) ، جد معدل تغير محيط الماء عندما يكون الارتفاع (6 cm)

- a) $\frac{2}{3}$
- b) $\frac{1}{3}$ c) $\frac{3}{2}$ d) $\frac{4}{3}$

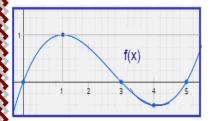


Abdulkadir Hasanat | 14 15 16 17 18 19 20 21 22 $\begin{bmatrix} c & d & a & d & b & c & d & a & b \end{bmatrix}$

رياضيات / علمي ف 1 (متوقعة - 2024) مدرسة البقعة الثانوية للبنين الأستاذ عبدالقادر الحسنات (77 88 531 878) : فإن للاقتران قيمة عظمى محلية ومطلقة قيمتها $f(x) = e^{\sin x}, x \in [0, \pi]$ اذا كان إذا كان $a) e b)-e c) e^{-1}$ d)1: فإن الاقتران متزايد في الفترة ، $f(x) = x^2 e^{2x-4}$ 24) إذا كان a) $(0, \infty)$ b) $(-\infty, 1)$ c) $(-1, \infty)$ d) (-1, 0)= (a) فإن قيمة الثابت ($\mathbf{x} = \mathbf{x} = \mathbf{x} = \mathbf{x}$ قيمة حرجة عند ($\mathbf{x} = \mathbf{x} = \mathbf{x} = \mathbf{x} = \mathbf{x}$ فإن قيمة الثابت (25) a) 7 b) -7 c) 1 d) 3عى: a, b فإن قيم $f(x) = x^2 + 2ax + b$ هي نقطة حرجة للاقتران (2, 3) غان قيم a) a = 2, b = 7 b) a = -2, b = -7 c) a = -2, b = 7 d) a = 2, b = -7***إذا كان الاقتران (f(x) معرف على الفترة [5 , 1 –] ، f'(x)فاستعمل التمثيل البياني المجاور لمنحني (x)' f للإجابة على الأسئلة (13– 16) 27) قِيَم x التي يكون عندها للاقتران f قِيَم قصوى محلية ، هي:

a) 0, 3 b) -1, 4 c) 1 d) -1, 1, 5

a) 0


29) قيمة (3)' f تساوي:

a) 0

b) 4

30) قيمة (3)" f تساوي:

*** f (x) كثير حدود من الدرجة الثالثة ، استعمل تمثيله البياني المجاور للإجابة على الأسئلة (17– 20)

a) 0, 3 b) 1, 3, 4 c) 0, 1, 4, 5 d) 1, 4

32) الاقتران متناقص في الفترة:

31) القيم الحرجة للاقتران هي:

a) (1,4) b) (3,5) c) (0,5) d) $(3,\infty)$

33) قِيَم x التي يكون عندها للاقتران f قِيَم قصوى محلية ، هي :

a) 0, 3, 5

b) 1

c) 0 , 1 , 3 , 4 , 5

d) 1, 4

23 24 25 26 27 **28** 29 30 31 32 33 |c| |b| |a| |d| |a| |d|

ياضيات / علمى ف 1 (متوقعة - 2024) مدرسة البقعة الثانوية للبنين الأستاذ عبدالقادر الحسنات (77 88 531 879)

: فإن للاقتران $f(x) = 2x^3 + 6x^2 + 7$ إذا كان $f(x) = 2x^3 + 6x^2 + 7$

- a) (-1,-6) b) (-1,0) c) (-1,11) d) (-1,7)

: هو f(x) الفقران الأعطاف لمنحنى الاقتران (x) فإن الإحداثي فإن الإحداثي (35) فإن الإحداثي (35)

- (a) 1 (b) -1 (c) -2
- d)2

: فإن منحنى $f(x) = x^4 - 4x^3 + 1$ مقعر للأسفل في الفترة (x) إذا كان

- a) $(2, \infty)$ b) (0, 2) c) $(-\infty, 2)$ d) $(-\infty, 0)$

: هو f(x) النقطة الانعطاف لمنحنى الاقتران $f(x) = Ln(x^2 + 9)$ هو (37) إذا كان $f(x) = Ln(x^2 + 9)$

- a) 3
- b) -3 c) -3,3
- d) 0

: وأذا كان x = 2x - (a-5) ، فإن قيم الثابت (a) التي تجعل منحنى f(x) = 2x - (a-5) مقعراً للأعلى هي (38)

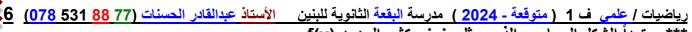
- a) $(5,\infty)$ b) $(-5,\infty)$ c) $(-\infty,-5)$ d) $(-\infty,5)$

: هي (a) الثابت $x=\frac{\pi}{3}$ فإن قيمة الثابت $f(x)=4\cos x-ax^2$ اله نقطة انعطاف عند (3)

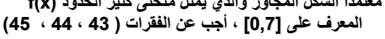
- (a) -1 (b) $\frac{1}{2}$ (c) $-\frac{1}{2}$ (d) 1

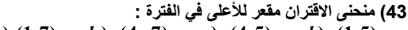
a, b فجد قيم الثابتين $f(x) = ax^3 + bx^2 + 2$ فجد قيم الثابتين (40)

- a) a = 1, b = 3 b) a = -1, b = 3 c) a = 1, b = -3 d) a = -1, b = -3


(b) فإن قيمة الثابت (x = 1 نقطة انعطاف عند $f(x) = \sqrt{x+3} + rac{b}{x}$ ، فإن قيمة الثابت (41

- $a) \frac{3}{8}$
- $(b) \frac{1}{8} \qquad (c) \frac{1}{8}$
- d)8


(k) فإن قيمة الثابت $\mathbf{x}=\mathbf{2}$ نقطة انعطاف عند $\mathbf{x}=\mathbf{2}$ ، فإن قيمة الثابت f(x)=2


- a) 0
- **b**) 1
- c)-2
- d) 2

34 35 36 37 38 39 40 41 42


*** معتمداً الشكل المجاور والذي يمثل منحنى كثير الحدود (f(x)

$$a) (4,1) b) (3,4) c) (5,0) d) (1,0)$$

$$a)$$
 2 $b)$ 0 $c)$ 1 d) قيمة (45) $f''(4)$ قيمة (45) غير موجودة (45)

f (x)

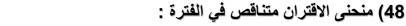
*** معتمداً الشكل المجاور والذي يمثل منحني المشتقة الأولى لكثير الحدود f(x) المعرف على [5, 2 -] ، أجب عن الفقرتين (46 ، 47)

46) منحنى الاقتران مقعر للأسفل في الفترة:

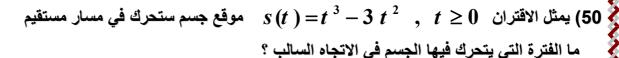
a)
$$\phi$$
 b) $(0,3)$ c) $(-2,2)$ d) $(-2,5)$

47) الإحداثي (x) لنقطة الانعطاف لمنحنى الاقتران (x) هو:

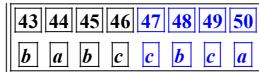
$$a) 3$$
 $b) 1$ $c) 2$ $d) 0$


منحنى (f) متزايد ... يعني (" f) موجبة ... يعني (f) مقعر للأعلى

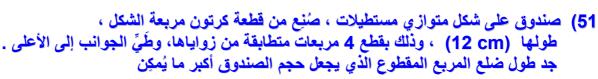
f"(x)


*** معتمداً الشكل المجاور والذي يمثل منحنى المشتقة الثانية لكثير الحدود (f(x) إذا علمت أن للاقتران f نقطتان حرجتان عند 0 x = 0 فأجب عن الفقرتين (48، 48)

a)
$$(2,\infty)$$
 b) $(0,3)$ c) $(-\infty,2)$ d) $(0,2)$

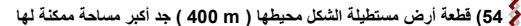

49) الإحداثي (x) لنقطة الانعطاف لمنحنى الاقتران (x) هو:

$$a) 3$$
 $b) 1$ $c) 2$ $d) 0$



a)
$$(0,2)$$
 b) $(0,6)$ c) $(2,6)$ d) $(2,\infty)$

52) قطعة من الورق المقوى ، يُراد صنع صندوق منها على شكل متوازي مستطيلات ، مفتوح من الأعلى وقاعدته مربّعة الشكل وحجمه (500 cm³) جد أبعاد الصندوق التي تجعل مساحة سطحه أصغر ما يمكن.



53) قطعة أرض مستطيلة الشكل مساحتها (400 m²) ، جد بعديه بحيث يكون محيطها أقل ما يمكن

الجواب: الطول = العرض = 1

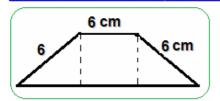
الجواب: 10000

55) قطعة أرض مستطيلة الشكل محيطها (m 120 m) جد بعديها اللذان يجعلان طول قطرها أكبر ما يمكن

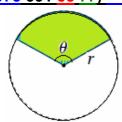
الجواب: الطول = العرض = 30 m

56) ورقة مستطيلة الشكل ، يُراد طباعة إعلان عليها بحيث يكون عرض كل من الهامشين في رأس الورقة وأسفلها (4 cm) وفي كل من الجانبين (1cm) ،إذا كانت مساحة المنطقة المطبوعة تساوى (400 cm²) ، جد بعدى الورقة بحيث تكون مساحتها أصغر ما يمكن (وتكفى لطباعة الإعلان)

الجواب: 48 ، 12

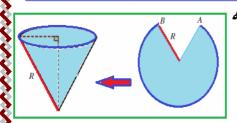

57) يُراد كتابة إعلان على قطعة من الورق مستطيلة الشكل مساحتها (32 cm²) ، بحيث يكون عرض كل من الهامشين في رأس الورقة وأسفلها (2 cm) وفي كل من الجانبين (1 cm) ، جد بعدي الورقة لتكون مساحة الإعلان أكبر ما يمكن .

الجواب: 8، 4

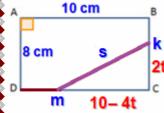

58) شبه منحرف فيه ثلاثة أضلاع متطابقة ، طول كل منها (6 cm) جد طول الضلع الرابع الذي يجعل مساحة شبه المنحرف أكبر ما يمكن

الجواب: طول الضلع = 3 + 6 + 3 = 12

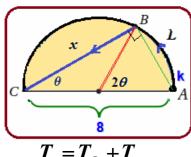
*** مساحة شبه المنحرف = نصف مجموع طولى الضلعين (القاعدتين) المتوازيين × البعد بينهما


ملاحظة:يجب حفظ القانون أو اشتقاقه من خلال (مساحة المثلث الأول+ مساحة المستطيل + مساحة المثلث الثاني)

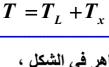
r ونصف قطر دائري محيطه (48 cm) ، زاويته θ ، ونصف قطر دائرته جد طول نصف القطر (r) التي تجعل مساحة القطاع أكبر ما يمكن



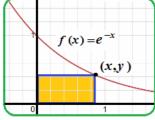
الجواب: 12 cm يجب حفظ القانون


60) قطاع دائري نصف قطر دائرته (R)، يُراد صنع مخروط دائري قائم منه وذلك من خلال ثني وتوصيل الحافتين (A) و(B) كما في الشكل المجاور، جد أكبر حجم ممكن للمخروط الناتج

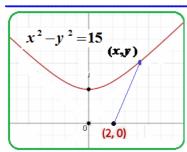
$$V = \frac{2\pi R^3}{9\sqrt{3}}$$
 : الجواب


(C) مستطيل ، بدأت النقطة (m) الحركة من (D) متجهة إلى (C) باتجاه (B) باتجاه (C) باتجاه (B) من (C) باتجاه (B) بسرعة (C) باتجاه (B) باتجاه (C) باتجاه (B) بسرعة (C cm / s) ، بعد كم ثانية تصبح المسافة بين النقطتين أقل ما يمكن ؟

2 sec : الجواب $s = \sqrt{(10-4t)^2 + (2t)^2}$ الجواب $s = \sqrt{(10-4t)^2 + (2t)^2}$ الحواب


(A) تتحرك النقطة (k) على منحنى نصف دائرة قطرها (8) منطلقة من (A) لتمر في النقطة (B) وتصل إلى (C) كما هو موضح في الشكل لمجاور إذا كانت سرعتها على محيط الدائرة (cm / sec) وسرعتها على الوتر (cm / sec) وسرعتها على الوتر (12 cm / sec) جد موقع النقطة (B) على محيط الدائرة التي تجعل الزمن أقل ما يمكن

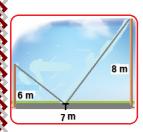
الجواب : يجب أن تنطبق (B) على (C) أي ⊖ يجب أن تكون 90 درجة



، فيتشكل المستطيل الظاهر في الشكل ، $f(x) = e^{-x}$ على منحنى الاقتران $f(x) = e^{-x}$

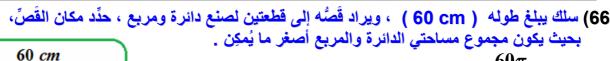
جد إحداثيي هذه النقطة بحيث تكون مساحة المستطيل أكبر ما يمكن

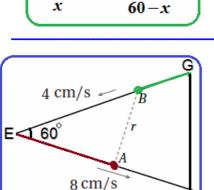
 $(1,\frac{1}{e})$: الجواب


 $x^2-y^2=15$ تتحرك النقطة (x,y) على منحنى العلاقة في الربعين الأول والثاني في الربعين الأول والثاني منحنى ألقال من النقالة من النقالة من النقالة الثانية (2.0)

جد إحداثيي هذه النقطة عندما تكون أقرب ما يمكن من النقطة الثابتة (2,0)

الجواب: (4, 1)


رياضيات / علمي ف 1 (متوقعة - 2024) مدرسة البقعة الثانوية للبنين الأستاذ عبدالقادر الحسنات (77 88 531 078) 9


65) عمودان طول أحدهما (m 8) ، وطول الآخر (m 6) ، والمسافة بينهما (m 7) ، يُراد تثبيتهما بسلك يتصل طرفاه بقمتي العمودين ثم تثبيت السلك بوتد على الأرض كما في الشكل المجاور.

جد الموقع المناسب لتثبيت الوتد بين العمودين لجعل طول السلك أقل ما يُمكِن.

الجواب : على بعد (m) من العمود القصير و (4 m) من العمود الطويل

$$x = \frac{60\pi}{\pi + 4}$$
 : الجواب

 0 يساوي EFG (67 مثلث فيه EG=14 cm ، قياس الزاوية EFG (67 مثلث فيه EG=14 cm ، قياس الزاوية 0 8 cm 0 8 cm 0 باتجاه 0 بسرعة 0 4 cm 0 6 وانطلقت النقطة 0 من 0 باتجاه 0 وبسرعة 0 4 cm 0 من 0 بين النقطتين أقصر ما يمكن؟

الجواب: بعد ثانية واحدة

68) يتم قطف 100 حبة برتقال من كل شجرة في الموسم الواحد عندما يكون عدد أشجار البرتقال في الحقل 60 شجرة ، فإذا علمت أنه عند زراعة كل شجرة جديدة ينقص إنتاج كل شجرة في الحقل بمقدار حبة واحدة ، فكم شجرة إضافية يجب زراعتها للحصول على أكبر إنتاج ممكن؟ $(100) \leftarrow 100 \leftarrow 60 \leftarrow 60$

$$61 \rightarrow 99 \rightarrow (61)(99)$$

$$62 \rightarrow 98 \rightarrow (62)(98)$$

$$60+x \to 100-x \to (60+x)(100-x)$$

الجواب: 20

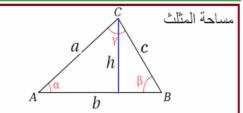
(69) وجد مدير التسويق في أحد المحلات أنَّه لبيع x حاسوبًا ، فإنَّ سعر الحاسوب الواحد يجب أنْ يكون: x عدد الأجهزة المَبيعة. x عدد الأجهزة المَبيعة.

إذا كانت تكلفة \hat{x} من هذه الأجهزة تعطى بالاقتران : \hat{x} + 3000 + \hat{x} ، فجد عدد الأجهزة التي يجب بيعها لتحقيق أكبر ربح مُمكِن.

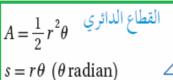
الجواب: 430 جهاز

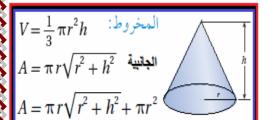
معر القطعة الواحدة من مُنتَج بالدينار لإحدى الشركات، s(x) = 150 - 0.035x يُمثِّل الاقتران: x عدد القطع المُنتَجة . ويُمثِّل الاقتران: x عدد القطع المُنتَجة . ويُمثِّل الاقتران: x قطعة جد أ) عدد القطع اللازم بيعها من المُنتَج لتحقيق أكبر ربح مُمكِن

بْ) أكبر ربح مُمكِنًا


ج) جد سعر الوحدة الواحدة من المُنتَج الذي يُحقِّق أكبر ربح مُمكِن.

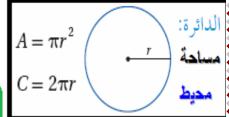
الجواب: أ) 560 ب) 23200 ج) 130.4

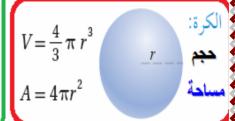

احة المثلث = نصف حاصل ضرب القاعدة في الارتفاع أو نصف حاصل ضرب أي ضلعين في (جيب) الزاوية بينه

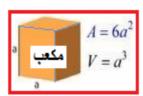

$$A = \frac{1}{2}bh$$

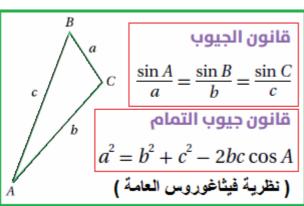
 $A = \frac{1}{2}ab\sin\theta$

 $\sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a)}$

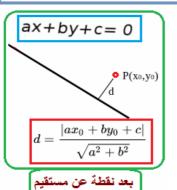


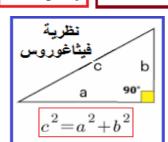


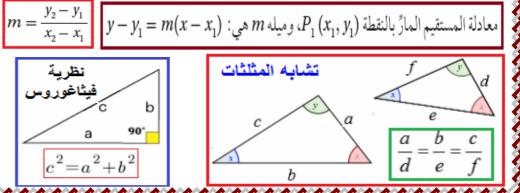






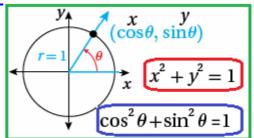





Area = x y

 $\overline{M}: \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

المسافة بين النقطتين $P_1\left(x_1,y_1
ight)$ و $P_2\left(x_2,y_2
ight)$ هي: إحداثيا نقطة منتصف القطعة المستقيمة $P_1\left(x_1,y_1
ight)$ هما $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$


ياضيات / علمى ف 1 (متوقعة - 2024) مدرسة البقعة الثانوية للبنين

1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$3) \csc \theta = \frac{1}{\sin \theta}$$

$$2) \sec \theta = \frac{1}{\cos \theta}$$

$$4) \cot \theta = \frac{\cos \theta}{\sin \theta} = \boxed{\frac{1}{\tan \theta}}$$

$$| \overline{\sin^2 \theta + \cos^2 \theta = 1} | \Rightarrow 6 | \overline{\sin^2 \theta = 1 - \cos^2 \theta} | \Rightarrow 7 | | \cos^2 \theta = 1 - \sin^2 \theta$$

بقسمة كل حد في
$$(5)$$
على ($\sin^2 heta$) بقسمة كل حد في (5) على ($\cos^2 heta$)

8)
$$\tan^2 \theta + 1 = \sec^2 \theta$$

9)
$$\cot^2 \theta + 1 = \csc^2 \theta$$

$$10) \sin(\frac{\pi}{2} - \theta) = \cos\theta$$

$$\cos(\frac{\pi}{2} - \theta) = \sin\theta$$

$$\tan(\frac{\pi}{2} - \theta) = \cot\theta$$

$$10)$$
 $\left| \frac{\sin(\frac{\pi}{2} - \theta) = \cos \theta}{\cos(\frac{\pi}{2} - \theta)} \right| \left| \frac{\cos(\frac{\pi}{2} - \theta) = \sin \theta}{\cos(\frac{\pi}{2} - \theta)} \right| \left| \frac{\tan(\frac{\pi}{2} - \theta) = \cot \theta}{\cos(\frac{\pi}{2} - \theta)} \right|$ والعکس

$$11) \overline{\sin(-\theta) = -\sin\theta}$$

$$\|\cos(-\theta) = \cos\theta\|$$

$$\tan(-\theta) = -\tan\theta$$

$$|\sin(a \pm b)| = \sin a \cos b \pm \cos a \sin b | 14| \tan(a \pm b) =$$

$$\sin 2\theta = \sin(\theta + \theta) = \sin \theta \cos \theta + \cos \theta \sin \theta \Rightarrow$$

$$\tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a + \tan b}$$

$$|\cos(a \pm b)| = \cos a \cos b \mp \sin a \sin b$$

$$15) \sin 2\theta = 2\sin\theta \cos\theta$$

 $\cos 2\theta = \cos(\theta + \theta) = \cos\theta\cos\theta - \sin\theta\sin\theta \Rightarrow$

$$\begin{vmatrix}
\cos 2\theta = \cos^2 \theta - \sin^2 \theta \\
= 1 - 2\sin^2 \theta \\
= 2\cos^2 \theta - 1
\end{vmatrix}$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$17) \sin^2 \theta = \frac{1}{2} (1 - \cos 2\theta)$$

$$19) \tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

18)
$$\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$$
 20) $\tan^2 \theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}$

$$19) \tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

$$20) \tan^2 \theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}$$

$$2\sin\alpha\sin\beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$

$$2\cos\alpha\cos\beta = \cos(\alpha - \beta) + \cos(\alpha + \beta)$$

Abdulkadir Hasanat 078 531 88 77

$$2\sin\alpha\cos\beta = \sin(\alpha - \beta) + \sin(\alpha + \beta)$$

سئلة متوقعة للعلمي (مراجعة مكثفة)- ف2 / وحدة الأعداد المركبة السؤال الأول: حدد الإجابة الصحيحة فيما يأتى ، ثم ضع دائرة حول رمزها |-1| ، $|\sqrt{-1}=i$: في الأسئلة المتعلقة بالأعداد المركبة ،دائما : |i|1) $\sqrt{-9} =$ b) 3 c) 3id)-3ib) 4i c) $-2\sqrt{2}i$ d) $2\sqrt{2}i$ a) -4i3) $\sqrt{-5} = a$) 25*i* b) 5*i* c) $i\sqrt{5}$ $d)-\sqrt{5}$ d)-12i5) $\sqrt{-4} \times \sqrt{-25} = a$) -10 b) 10 c) 10i d) -10i6) $\sqrt{-8} \times \sqrt{-6} = a$) $-4i\sqrt{3}$ b) $\sqrt{48}$ c) $4\sqrt{3}$ $(d) - 4\sqrt{3}$ 7) $-2i \times \sqrt{-1} = a) 2$ b) -2 c) 2id)-2i8) $\sqrt{\frac{-9}{4}} = a - \frac{3}{2}$ $b \cdot \frac{3}{2}i$ $c - \frac{3}{2}i$ $d)\frac{9}{4}i$ 9) $\sqrt{\frac{-1}{4}} = a - \frac{1}{2}$ $b - \frac{1}{2}i$ $c - \frac{1}{2}i$ d) 2i10) $\sqrt{-(a)^2} = a a$ b)-ac) ai d) -aia) 1 b) -1d) -i11) c)i12) a) 1 b) -1c)id) -i13) $i^6 = a \cdot 1$ d) -ib) -1c)i14) $i^4 =$ a) 1 b) -1d) -ic)ib)-1a) 1 d) -ic)i $a)-\frac{1}{i}$ $b)\frac{1}{i}$ c)-id)i8 9 10 11 12 13 14 15 16

17)
$$a,b \in R$$
, $2a+3b+(5-2b)i=1-i \Rightarrow a=?$

078 531 88 77

a) 4

 $(b) -4 \qquad (c) -3 \qquad (d) 3$

18)
$$a,b \in R$$
, $a+3+i(b^2-2)=5+ai \Rightarrow b=?$

 $(a) \pm 2$ $(b) \pm 4$ (c) - 2 (d) 2

19)
$$x, y \in R$$
, $3x - 2y + 2xi = 3 + (y + 1)i \Rightarrow$

a) x = 1, y = 3

b) x = -1, y = 3

c) x = 1, y = -3 d) x = -1, y = -3

$$20) \quad z = 6 - 5i \Rightarrow |z| = ?$$

مقياس العدد المركب ٢: | ١

a) 1 b) $\sqrt{61}$ c) $\sqrt{11}$

d) 11

21)
$$z = -2 + 5i \Rightarrow |z| = ?$$

a) $\sqrt{3}$ b) $\sqrt{21}$ c) $\sqrt{29}$

d) 3

$$22) \quad z = 3i \Rightarrow |z| = ?$$

a) 9 b) $\sqrt{3}$ c) 1 d) 3

23)
$$z = 2 - 3i\sqrt{2} \Rightarrow |z| = ?$$

(a) $\sqrt{22}$ (b) $13\sqrt{2}$ (c) $\sqrt{12}$

d) 22

24)
$$z = 2 + 2\sqrt{3}i \Rightarrow |z| = ?$$

a) 2

b) 4

c) 16

d) 1

25)
$$z = 2 + \sqrt{-12} \Rightarrow |z| = ?$$

a) 4

b) 3

c) 16

d) 12

$$26) \quad z = -3 + 3i \Rightarrow |z| = ?$$

a) 18

b) 3

c) 6

d) $3\sqrt{2}$

$$27) z = 3 - 2i \Rightarrow \overline{z} = ?$$

 $z = a + ib \Rightarrow \overline{z} = a - ib$ $z = a - ib \Rightarrow \overline{z} = a + ib$

$$-3-2i \rightarrow \zeta - i$$

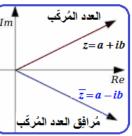
$$-ib \Rightarrow z = a + ib$$

a)
$$3-2i$$

a)
$$3-2i$$
 b) $-3-2i$ c) $3+2i$

$$(c) 3 + 2i$$

$$(d) - 3 + 2i$$


28)
$$z = 3i \Rightarrow \overline{z} = ?$$

$$a)$$
 $3i$

a)
$$3i$$
 b) $-3i$ c) 3

$$c)$$
 3

$$d)-3$$

29)
$$z = 2 + 3i \Rightarrow Arg(z) = \theta = ?$$

a)
$$0.98$$
 b) -0.98 c) 0.54

$\theta = \operatorname{Arg}(z)$	الربع
$\tan^{-1}\left(\frac{b}{a}\right)$	الأوَّل

30)
$$z = -3 + 4i \Rightarrow Arg(z) = \theta = ?$$

$$b)-0.927$$
 $c)-2.2$

$$(c)-2.2$$

$$d$$
) 2.2

$$d$$
) $\frac{\pi- an^{-1}\left(rac{b}{a}
ight)}{ an^{-1}\left(rac{b}{a}
ight)-\pi}$ الثالث $- an^{-1}\left(rac{b}{a}
ight)$

31)
$$z = -3 - 4i \Rightarrow Arg(z) = \theta = ?$$

$$b) 2.2 c) - 2.2$$

32)
$$z = 5 - 3i \Rightarrow Arg(z) = \theta = ?$$

$$b)-0.6$$

33)
$$z = 4 - 5i\sqrt{2} \Rightarrow Arg(z) = \theta = ?$$

$$b)-1.06$$

34)
$$z = 6-3i \Rightarrow Arg(z) = \theta = ?$$

$$b)-0.54$$

$$d) - 0.46$$

35)
$$z = 4i \Rightarrow Arg(z) = \theta = ?$$

$$a) \pi$$

$$b)-\frac{\pi}{2}$$
 $c)\frac{\pi}{2}$

$$c)\frac{\pi}{2}$$

$$d) \frac{3\pi}{2}$$

36)
$$z = 2\sqrt{3} + 2i \Rightarrow Arg(z) = \theta = ?$$

$$a) \frac{\pi}{6}$$

$$b)-\frac{\pi}{6}$$

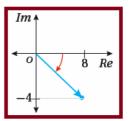
c)
$$\frac{\pi}{3}$$
 d) $\frac{\pi}{4}$

$$d)\frac{\pi}{4}$$

ياضيات / علمي ف 1 (متوقعة - 2024) مدرسة البقعة الثانوية للبنين الأستاذ عبدالقادر الحسنات (77 88 531 870)

- 37) $z = 5i 12 \Rightarrow Arg(z) = \theta = ?$

 - a) 0.39 b) -0.39
- c)-2.75
- d) 2.75


- $z = 3i 3 \Rightarrow Arg(z) = \theta = ?$

- (a) $\frac{\pi}{4}$ (b) $-\frac{\pi}{4}$ (c) $\frac{3\pi}{4}$ (d) $\frac{3\pi}{4}$
- العدد المركب المُمثل بيانيا في الشكل المجاور هو: 39)
 - a) 8 + 4i

(b) - 8 - 4i

c)8-4i

(d) - 8 + 4i

z = a + ib $Arg(z) = \theta \cdot |z| = r \implies z = r(\cos \theta + i \sin \theta)$

- 40) $z = -2 2i \Rightarrow$
 - a) $z = 2\sqrt{2}(\cos\frac{-3\pi}{4} + i\sin\frac{-3\pi}{4})$ b) $z = 8(\cos\frac{-3\pi}{4} + i\sin\frac{-3\pi}{4})$
 - $c) z = 2\sqrt{2} \left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$
- d) $z = 2\sqrt{2}(\sin{\frac{-3\pi}{4}} + i\cos{\frac{-3\pi}{4}})$
- في الصورة الثلثية: لا نجد قيمة $\sin \theta, \cos \theta$ والإشارة بين الجزئين $|+\rangle$
- 41) $z = 2i \Rightarrow$

- a) $z = 2(\cos\frac{\pi}{2} i\sin\frac{\pi}{2})$
- b) $z = 2(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$
- c) $z = \sqrt{2} \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}\right)$
- d) $z = \sqrt{2} \left(\sin \frac{\pi}{2} + i \cos \frac{\pi}{2} \right)$
- $r(\cos\theta i\sin\theta) = r(\cos(-\theta) + i\sin(-\theta))$
- $|r(-\cos\theta+i\sin\theta)=r(\cos(\pi-\theta)+i\sin(\pi-\theta))|$
- 42) $z = 4 \Rightarrow$
 - a) $z = 4(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$
- b) $z = 4(\cos \pi + i \sin \pi)$
- $c) z = 4(\cos 0 + i \sin 0)$
- $d) z = 4(\cos(-\pi) + i\sin(-\pi))$

38 39 40 41 42

رياضيات / علمي ف 1 (متوقعة - 2024) مدرسة البقعة الثانوية للبنين الأستاذ عبدالقادر الحسنات (77 88 531 878) 5

43)
$$|z| = 4$$
, $Arg(z) = \frac{\pi}{6} \Rightarrow$

a)
$$z = 4(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$$

$$b)z = 4(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6})$$

c)
$$z = 2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$$

$$d$$
) $z = 16(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$

44)
$$z = -2 + 2i\sqrt{3} \Rightarrow$$

$$a) z = 4(\cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3})$$

b)
$$z = 4(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})$$

$$c) z = 16(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2})$$

d)
$$z = 4(\sin{\frac{-2\pi}{3}} + i\cos{\frac{-2\pi}{3}})$$

$$45) \quad z = 2 - 2i\sqrt{3} \Rightarrow$$

a)
$$z = 4(\cos(1.05) + i\sin(1.05))$$

$$b)z = 4(\cos(1.05) - i\sin(1.05))$$

$$c) z = 4(\cos(-1.05) + i\sin(-1.05))$$

$$d$$
) $z = 4(\cos(-1.05) - i\sin(-1.05))$

$$46) \quad z = 2\sqrt{3} + 2i \Rightarrow$$

a)
$$z = 4(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6})$$

b)
$$z = 4(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$$

c)
$$z = 2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$$

$$d)z = 4(\cos\frac{-\pi}{6} + i\sin\frac{-\pi}{6})$$

$$47) \quad z = -1 - i\sqrt{3} \Rightarrow$$

a)
$$z = 2(\cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3})$$

b)
$$z = 2(\cos{\frac{2\pi}{3}} + i\sin{\frac{2\pi}{3}})$$

c)
$$z = 2(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2})$$

d)
$$z = 2(\cos{\frac{-2\pi}{3}} + i\sin{\frac{-2\pi}{3}})$$

48)
$$z = -2\sqrt{3} - 2i \Rightarrow$$

a)
$$z = 4(\cos\frac{-5\pi}{6} + i\sin\frac{-5\pi}{6})$$

b)
$$z = 4(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$$

$$c) z = 4(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$$

$$d) z = 4(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$$

$$49) \quad z = 2 + i\sqrt{12} \Rightarrow$$

$$a) z = 4(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3})$$

b)
$$z = 4(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$$

c)
$$z = 2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$$

$$d$$
) $z = 4(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$

50)
$$Arg(2+i) = \theta \Rightarrow Arg(i-2) =$$

$$a) \theta$$

$$b)\frac{\pi}{2}-6$$

c)
$$\pi - \theta$$

$$d) \theta - \pi$$

ياضيات / علمى ف 1 (متوقعة - 2024) مدرسة البقعة الثانوية للبنين الأستاذ عبدالقادر الحسنات (77 88 531 88) 6

51) z = 3 + i k, $k \in \mathbb{R}$, |z| = 5, $0 < Arg(z) \le \frac{\pi}{2} \Rightarrow k = ?$

- a) 4

- $b)\pm 4$ c)-4 d) 16

52) $z = 3 + 2i \ k \ , \ k \in \mathbb{R} \ , \ |z| = \sqrt{45} \implies k = ?$

- a) 3

- $(b)\pm 3$ (c)-3 $(d)\pm 9$

 $z_1 = 5 + 3i$, $z_2 = 4 - 2i$ $\Rightarrow z_1 + z_2 =$ a) 9+i b) 9-i c) 1+5i d) 1+i

54) $z_1 = 3 - i$, $z_2 = 4 - 5i \Rightarrow z_1 - z_2 = 4 - 5i$

- a) 1+6i b) -1+4i c) 1-4i d) 1-6i

55) $z_1 = 4 + 2i$, $z_2 = 3 - 3i \implies z_1 \times z_2 = 2i$

- a) 6+6i b) 12-6i c) 18-6i d) 6+6i

56) 5i(2-3i) =

- (a)-15+10i (b) 15+13i (c) 15-10i
- d) 15 + 10i

57) $(4+i)^2 =$

- a) 15+8i b) 17+8i c) 15-8i d) 1+8i

58) (2+3i)(1-i) =

- a) 5-i
- b) 5+i c) -1+i
- d)5-5i

 $z_1 = 3 + 5i$, $z_2 = 1 - i \Rightarrow \frac{z_1}{z_2} =$

- (a)-1+4i (b) (1-4i) (c) (3-2i) (d) (4+2i)

60)

- a) 1-4i b) 1+4i c) 4-4i d) 8-8i

61)

- $\frac{8i}{1-i} = a 4 + 4i$
- b) 4i + 1
- c) 4i-4
- d) 8i-1

62)

- $\frac{8+2i}{2i} = a 1 + 2i$ b) 1+2i
- c) -4i +1
- d)4i-1

51 52 53 54 55 56 57 58 59 60 61 62

ياضيات / علمى ف 1 (متوقعة - 2024) مدرسة البقعة الثانوية للبنين الأستاذ عبدالقادر الحسنات (77 88 531 88 77)

63)
$$\frac{(1+2i)^2}{3-i} = a$$
 $\frac{1+5i}{10}$ b $\frac{1-5i}{10}$ c $\frac{-13-9i}{10}$ d $\frac{-13+9i}{10}$

64)
$$(\frac{1+2i}{2-i})^5 = a) \frac{5i}{3}$$
 $b) \frac{-5i}{3}$ $c) \frac{-125i}{27}$ $d) i$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \right)$$
الصورة المثلثية

في الصورة المثلثية ، يجب أنْ تكون θ هي السعة الرئيسة . ويجب أن تكون العملية جمع (+) في كل من العددين

65)
$$z_1 = 10(\cos\frac{2\pi}{7} - i\sin\frac{2\pi}{7}), z_2 = 2(\cos\frac{6\pi}{7} + i\sin\frac{6\pi}{7})) \implies z_1 \times z_2 =$$

- a) $20(\cos\frac{4\pi}{7} + i\sin\frac{4\pi}{7})$
- b) $20(\cos\frac{\pi}{7}+i\sin\frac{\pi}{7})$
- c) $5(\cos\frac{4\pi}{7}+i\sin\frac{4\pi}{7})$
- d) $5(\cos\frac{\pi}{7}+i\sin\frac{\pi}{7})$

66)
$$z_1 = 6(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$$
, $z_2 = 2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}) \Rightarrow \frac{z_1}{z_2} =$

- a) $3(\sin\frac{7\pi}{6} + i\cos\frac{7\pi}{6})$
- b) $3(\sin\frac{\pi}{2}+i\cos\frac{\pi}{2})$
- c) $2(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6})$
- d) $3(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2})$

67)
$$z_1 = 6(\cos\frac{-\pi}{3} + i\sin\frac{-\pi}{3})$$
, $z_2 = 2(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}) \Rightarrow z_1 \div z_2 =$

- a) $3(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$
- b) $3(\sin \frac{5\pi}{6} + i \cos \frac{5\pi}{6})$
- c) $3(\cos\frac{5\pi}{6} i\sin\frac{5\pi}{6})$ d) $3(\cos\frac{-5\pi}{6} + i\sin\frac{-5\pi}{6})$

68)
$$z_1 = 2(\cos{\frac{\pi}{4}} + i \sin{\frac{\pi}{4}})$$
, $z_2 = 3(\cos{\frac{\pi}{3}} + i \sin{\frac{\pi}{3}}) \Rightarrow z_1 z_2 =$

- a) $6(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12})$ b) $6(\cos\frac{7\pi}{12} i\sin\frac{7\pi}{12})$
- c) $6(\sin\frac{5\pi}{6} i\cos\frac{5\pi}{6})$ d) $6(\sin\frac{-5\pi}{6} + i\cos\frac{-5\pi}{6})$

69)
$$z = 5(\cos(\frac{\pi}{4}) - i \sin(\frac{\pi}{4})) \Rightarrow z \times \overline{z} =$$

a) $\frac{5}{\sqrt{2}}$

- b) 25
- c) $25(\cos\frac{\pi}{8}+i\cos\frac{\pi}{8})$
- d) $5(\cos\frac{\pi}{2}+i\cos\frac{\pi}{2})$

70)
$$z = \sqrt{2}(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}) \Rightarrow z^2 =$$

- a) $\sqrt{2}(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})$ b) $4(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})$
- c) $\sqrt{2}(\cos{\frac{2\pi}{3}} i\sin{\frac{2\pi}{3}})$
- d) $2(\cos\frac{2\pi}{3} + i \sin\frac{2\pi}{3})$

63 d

64 |d|

65

66 d

67

68

69

ياضيات / علمي ف 1 (متوقعة - 2024) مدرسة البقعة الثانوية للبنين الأستاذ عبدالقادر

خلافًا للأعداد الحقيقية، يوجد لكل عدد مُركّب جذران تربيعيان، وهما عددان مُركّبان أيضًا.

$$\overline{|z:\sqrt{z}=x+iy\Rightarrow(\sqrt{z})^2=(x+iy)^2\Rightarrow z=x^2-y^2+2ixy}, \quad x,y\in R$$

71)
$$z = 5 - 12i \Rightarrow \sqrt{z} =$$

$$a) \pm (3+2i)$$

$$b) \pm (3-2i)$$

$$c) \pm (2+3i)$$

$$d) \pm (2-3i)$$

72)
$$z = -15 - 8i \Rightarrow \sqrt{z} = a) \pm (1 - 4i)$$

$$b) \pm (1+4i)$$

$$c) \pm (1-2i)$$

$$d) \pm (1+2i)$$

73)
$$z = 3 + 4i \Rightarrow \sqrt{z} = a \pm (1 - 2i)$$

$$b) \pm (1+4i)$$

$$c) \pm (2-i)$$

$$d) \pm (2+i)$$

74)
$$z = \sqrt{6} - 8i \Rightarrow \sqrt{z} =$$

$$a) \pm (\sqrt{2}-i)$$

$$b) \pm \sqrt{2}(2-i)$$

c)
$$\pm(\sqrt{2}+i)$$

$$(d) \pm (2\sqrt{2}-i)$$

75)
$$z = 1 + \sqrt{3}i \Rightarrow \sqrt{z} =$$

a)
$$\pm \frac{1}{2}(-\sqrt{6}-\sqrt{2}i)$$
 b) $\pm \frac{1}{2}(-\sqrt{6}+\sqrt{2}i)$

$$b) \pm \frac{1}{2}(-\sqrt{6} + \sqrt{2}i)$$

$$c) \pm (\sqrt{3} - i)$$

$$d) \pm \frac{1}{2}(\sqrt{3}-i)$$

76)
$$z = 8(\cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3}) \Rightarrow \sqrt{z} =$$

$$a) \pm (\sqrt{2} - i\sqrt{6})$$

$$b) \pm (2-6i)$$

$$c) \pm (2+6i)$$

$$d) \pm (\sqrt{2} + i\sqrt{6})$$

: مان (b+3i)، فإن قيمة الثابت (b+3i) إذا كان (b+3i)، فإن قيمة الثابت (b) تساوي

- a)-4
- **b**) 4
- c)3
- d)-3

: تساوي (k) هو أحد الجذور التربيعية للعدد المركب (16+30i)، فإن قيمة الثابت (k) تساوي (5+ki) إذا كان

- a) 3
- c) 9
- d)-3

رياضيات / علمى ف 1 (متوقعة - 2024) مدرسة البقعة الثانوية للبنين الأستاذ عبدالقادر الحسنات (77 88 531 88) 9 b) 1, $6\pm 2i$: هو $z^3-5z^2+4z+10=0$ حل المعادلة (79) a) 1, $3 \pm i$ $d)-1,6\pm 2i$ $(c)-1, 3\pm i$: هو $x^2 - 4x + 29 = 0$ هو عادلة عادلة a) 2+5i, -2+5ib) 2-5i, -2-5i(c)-2-5i, -2+5id) 2+5i, 2-5i: هي نات العبارة الصحيحة هي ، $ax^3 + bx^2 + cx + d = 0$, $a,b,c,d \in R$ اذا كانت $ax^3 + bx^2 + cx + d = 0$, $a,b,c,d \in R$ a) قد يكون للمعادلة ثلاثة جذور مركبة (غير حقيقية) b) قد يكون للمعادلة جذران مركبان وجذر حقيقى واحد d) لا يوجد للمعادلة جذور حقيقية c) لا يوجد للمعادلة جذور حقيقية أو مركبة : هي اياتي هي العبارة الصحيحة فيما يأتي هي : $ax^2+bx+c=0$, a,b , $c\in R$ إذا كانت a) قد يكون للمعادلة ثلاثة جذور حقيقية b) قد يكون للمعادلة جذران مركبان (غير حقيقيين) c) قد لا يكون للمعادلة جذور حقيقية أو مركبة d) قد يكون للمعادلة جذر حقيقي وجذر مركب (غير حقيقي $ax^3 + bx^2 + cx + d = 0$, $a,b,c,d \in R$ إذا كانت (83) فإن عدد الجذور المركبة وغير الحقيقية الممكنة للمعادلة هو: c) 2 أو صفر 4 (d 1 (b 3 (a : (المعادلة : $x^2 + ax + b = 0$) أحد جذري المعادلة : (2 + 4i) فإن قيمة الثابت (عن المعادلة) c) - 12d)-6a) 20 **b**) 10 \cdot فان x^2+k x+b=0 : فان (4-2i) فان (85) اذا كان a) k = -8, b = 20b) k = 8, b = -20c) k = 4, b = -2 d) k = 8, b = 2080 81 82 83 84 85

رياضيات / علمى ف 1 (متوقعة - 2024) مدرسة البقعة الثانوية للبنين الأستاذ عبدالقادر الحسنات (77 88 531 88 70)

: فإن الجذر الآخر هو $a,b,c,d \in R$, $ax^2 + bx + c = 0$ فإن الجذر الآخر هو 3+2i فإن الجذر الآخر هو

$$a)-3-2i$$
 $b) 3-2i$ $c)-3+2i$

$$b)3-2$$

$$(c)-3+2$$

$$d)9-4i$$

c=hk و b=h+k و b=h+k و b=h+k و المعادلة التربيعية $x^2-bx+c=0$ و

a)
$$x^2 - 4x - 29 = 0$$

$$b) x^2 + 4x - 29 = 0$$

c)
$$x^2 - 4x + 29 = 0$$

$$d)x^2-4x-21=0$$

$$a)$$
 1, $3 \pm i$

$$b$$
) 1 , $6\pm 2i$: هو $z^3-5z^2+4z+10=0$ حل المعادلة

$$(c)-1, 3\pm i$$

$$(d)-1,6\pm 2i$$

: هو $x^2 - 4x + 29 = 0$ هو على المعادلة

a)
$$2+5i$$
, $-2+5i$

$$b)2-5i$$
, $-2-5i$

$$(c)-2-5i$$
, $-2+5i$

$$d) 2+5i, 2-5i$$

 $x^2 - 4x + 5 = 0$ حل المعادلة (90) حل

a)
$$2 \pm i$$

$$b)-2\pm i$$

c)
$$1 \pm i$$

$$d$$
) $5 \pm 2i$

$$a) \pm 3i$$

$$b) \pm 9i$$

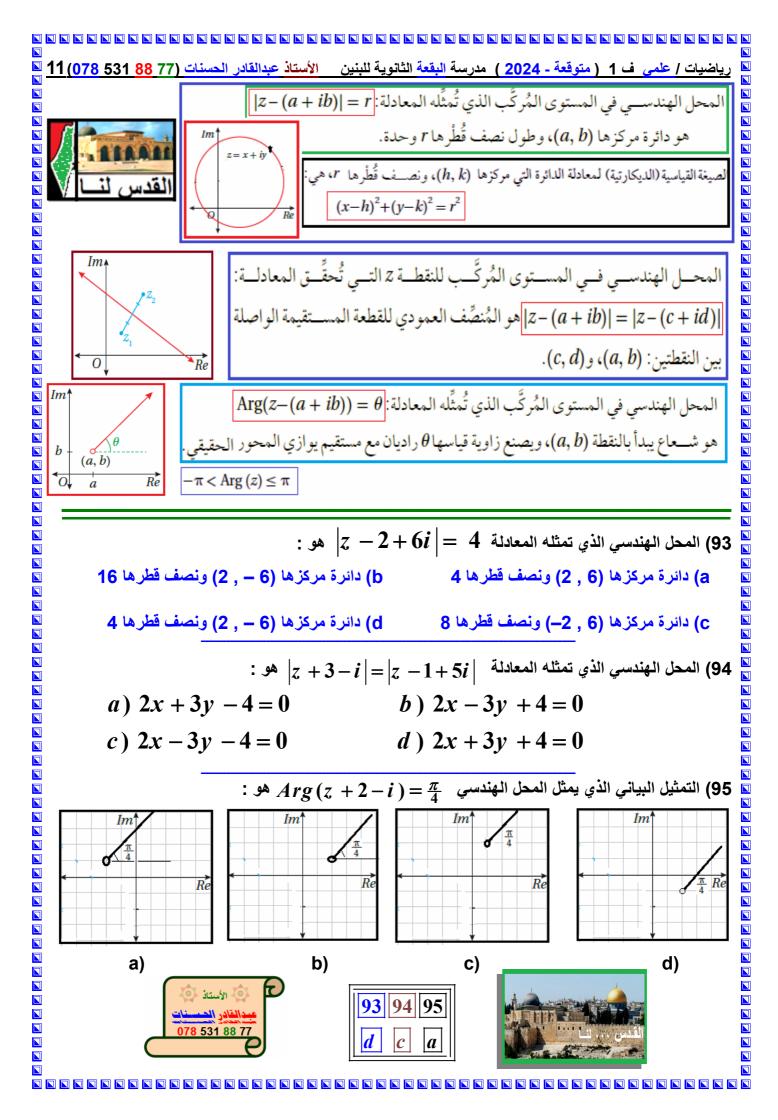
$$c) \pm 3$$

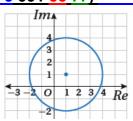
$$d) \pm 9$$

: 91 عل المعادلة
$$x^2 + 9 = 0$$
 هو

: 92 جذرا للمعادلة $z=rac{3}{2}$ ، فإن الجذرين الآخرين هما $z=rac{3}{2}$) إذا كان

$$a) -3 \pm i$$

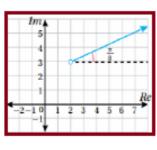

$$b)-2\pm i$$

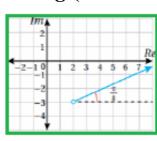

$$c)$$
 1 ± 2 i

$$d)3\pm i$$

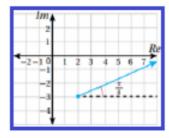
86 87 88 89 90 91 92

96) معادلة المحل الهندسي الممثل بيانيا في الشكل المجاور هي:

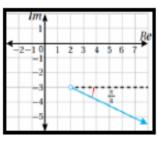

$$|z-(1-i)|=3$$


$$|z-(3-i)|=1$$

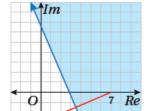
$$c) |z - (1+i)| = 3$$


$$|z-(3+i)|=1$$

 $b: arg(z-2+3i)=rac{\pi}{8}$ التمثيل البياني الذي يمثل المحل الهندسي (97



b)

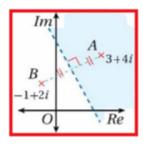


c)

a)

d)

98) متباينة المحل الهندسي الذي تُمثِّله المنطقة المُظلَّلة هي:

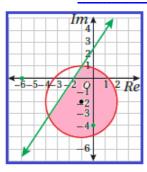

b) $|z + 7| \ge |z - 3i|$

 $|z| + 7 \le |z| - 3i$

 $a)|z-7|\geq |z+3i|$

d) $|z-7| \le |z+3i|$

99) متباينة المحل الهندسي الذي تُمثِّله المنطقة المُظلَّلة هي:



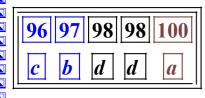
a)
$$|z-1+2i| < |z+3+4i|$$

b)
$$|z - 1 + 2i| > |z + 3 + 4i|$$

c)
$$|z + 1 - 2i| < |z - 3 - 4i|$$

d)
$$|z + 1 - 2i| > |z - 3 - 4i|$$

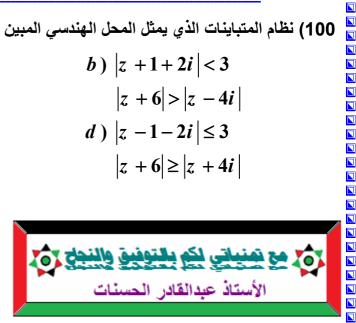
a: هو ، مقال المتباينات الذي يمثل المحل الهندسي المبين في الشكل المجاور ، هو


a)
$$|z+1+2i| \le 3$$

 $|z+6| \ge |z+4i|$

b)
$$|z + 1 + 2i| < 3$$

 $|z + 6| > |z - 4i|$


c)
$$|z-1-2i| \le 3$$

 $|z-6| \ge |z-4i|$

$$|z-1-2i| \le 3$$

$$|z+6| \ge |z+4i|$$

